
Attack Directories on ARM
big.LITTLE Processors

Zili KOU 1, Wenjian HE 1, Wei ZHANG 1, and Sharad Sinha 2

1 Hong Kong University of Science and Technology
2 Indian Institute of Technology Goa

•Cache side-channel
• Utilize the timing difference between cache hit and miss

•Attack scenarios
• covert channel communications
• extracting cryptographic keys (RSA, AES, etc.)
• speculative execution attacks

2

Cache Side-channel Attacks

Shared cache lines

Cache hit: ≈ 20 cpu cycles

Cache miss: ≈ 100 cpu cycles

• Three types
• Coherence-based: [1], [2]

• Exploit the cache coherence protocol between cores

• Flush-based: Flush+Reload [3], Flush+Flush [4]
• Clean and flush a cache line, and then reload/flush again

• Evict-based: Prime+Probe [5]
• Evict, occupy, and reload a whole cache set by using the “eviction set”

3

Cache Side-channel Attacks

Prime Wait Probe

Tag

line 0

line 15

···

···

Data

···

···

Cache Set 77

···

line 1

Tag

line 0

line 15

···

···

Data

···

···

Cache Set 77

···

line 1

Tag

line 0

line 15

···

···
Data

···

···

Cache Set 77

···

line 1

Tag

line 0

line 15

···

···

Data

···

···

Cache Set 77

···

line 1

Empty state

Owned by attacker

Owned by victim

• Practicality?
• Cache cleaning instructions is usually suggested to be forbidden

• Shared memory with victim is impossible without page-sharing or memory deduplication

• Evict-based attacks utilize “Eviction Set (EV)”
• Lower precision, though

• More feasible and practical

4

Cache Side-channel Attacks

Cache cleaning instructions Shared memory space

Coherence-based Not required Required

Flush-based Required Required

Evict-based Not required Not required

•Prerequisites
• Shared cache between attacker and victim

• Usually exist on x86 CPUs, how about ARM CPUs?

• Inclusive cache hierarchy
• ARM CPUs usually adopt non-inclusive cache

5

Evict-based Cache Side-channel Attacks

•Classic IPs
• 4 A53 + 4 A73 cores
• CCI-500/550 interconnect

•Attack scenarios
• Single-core
• Cross-core
• Cross-cluster

6

ARM big.LITTLE Arch

Interrupt Controller

Arm CCI-5XXSnoop Filter

…

GPU

L2 Cache L2 Cache

L1 Cache

L1 Cache

Little Core

Big Core

GPU Cache

Memory Controller Peripheral …

•Attack scenarios
• Single-core

• L1 is easy to attack!

• Cross-core
• L2 is usually non-inclusive

• Cross-cluster
• Even no shared cache!

7

Attack on ARM big.LITTLE Arch

Interrupt Controller

Arm CCI-5XXSnoop Filter

…

GPU

L2 Cache L2 Cache

L1 Cache

L1 Cache

Little Core

Big Core

GPU Cache

Memory Controller Peripheral …

•Research gap
• Two cross-core attacks are limited by [8]
• No cross-cluster evict-based attacks on ARM

8

Cache Side-channel Attacks on ARM CPUs

• Reveal and dive into the directories on ARM big.LITTLE CPUs

• Overcome the difficulties when attacking ARM big.LITTLE CPUs

• Fill the gap of cross-core / cross-cluster attacks

9

Our Contribution

•Reverse engineering of the directory named Snoop Filter (SF)
• Structure and Properties
• SF eviction set construction

•Compare SF with cache in real attack applications
• Covert channel
• Attack Cryptographic algorithm

• RSA

• AES

• TrustZone scenario
10

We introduce…

•A directory structure to store
• Tags of cached data in each core
• Cache coherence states
• …

•Avoid broadcast every load/store
request, reduce the bus overhead

11

General design of SF

•Affected SoCs
• ARM SoCs with CCI-500/550

12

Experiment Platforms

• SF is not well documented and not yet explored!
• We only got limited hints from official manuals
• We must make “conservative” assumptions

•Assumptions
• 8-way set-associative structure
• May or may not be Bank-sliced structure
• SF strictly contains all cached data, otherwise cannot keep the coherence

• SF conflicts trigger “back-invalidate”

13

Hints and Assumptions

• Like cache EV, there exists the SF index portion

• Dedicated search algorithm
• Allocate a set of data with the same lower-n bits of their address

• Search out the first SF EV by timing difference

14

Find the first SF Eviction Set (EV)

Memory for a 4 GB address space from the
aspect of the 4 KB page, L1 cache, and the
L2 cache.

• Test cache and SF EVs with different size

• lines’ slopes depict the capacity of an SF set and a cache set

• Confirmed that SF is 8-way set associative

15

Reverse engineering

Set Associativity

• Possible replacement policy
• Least Recently Used (LRU)

• Random Replacement

• …

• Place the data of a SF EV “in order”, observe which data would be
selected to replace
• Observed an even distribution of the 8 addresses

• Most possibly Random Replacement

16

Reverse engineering

Replacement Policy

• how many mutually exclusive EVs are in a contiguous memory space?

• There are 16384 SF sets

17

Reverse engineering

Set Size

• The address portion used to index which SF set to map

• Check the identical bits of data in an SF EV

• 8th bit to 19th bit (interesting that is doesn’t follow the line offset bits)

18

Reverse engineering

Set Index Portion

4K Page OffsetPhysical Frame Number

𝑏0

SF Set Index Line OffsetSF Tag

𝑏5𝑏19 𝑏11𝑏31 𝑏8SF Bank Hash

• Is SF bank-sliced?
• Set index portion has only 11 bits, while Set size is 16384

• Indicate there are 8 SF banks

• Reverse engineered the bank hash function by dedicated algorithm

19

Reverse engineering

Bank Hash Function

• 8-way set associative

• Random replacement policy

• 16384 SF sets

• Index mechanism (index portion and bank hash function)

20

Reverse engineering

Summary

Memory for a 4 GB address space from the aspect of the 4 KB page, L2 cache, and the SF.

L2 Set Index

4K Page OffsetPhysical Frame Number

𝑏0

SF Set Index Line OffsetSF Tag

𝑏5𝑏19 𝑏11𝑏31

Line OffsetL2 Cache Tag

𝑏16 𝑏8SF Bank Hash

• SF-Prime+Probe

1. Randomly collect an address and construct its corresponding SF EV.

2. Access the address to cache it well and then access the SF EV

3. Check if the data is still cached.

21

Reverse engineering

Verify the attack surface of the SF

Passed the verification in all three scenario:
Single-core, Cross-core, and Cross-cluster !

•Reverse engineering of the directory named Snoop Filter (SF)
• Structure and Properties
• SF eviction set construction

•Compare SF with cache in real attack applications
• Covert channel
• Attack Cryptographic algorithm

• RSA

• AES

• TrustZone scenario
22

We introduce…

• Cannot directly deal with the SF, instead, we rely on caches to interact with the SF

• No way to distinguish SF conflicts from cache conflicts, as they both behave as cache misses

• SF conflicts appear much less often than cache conflicts

23

SF EV Construction

Construct SF EV in user space is not as easy as cache EV!

We propose,
avoid cache conflicts first, and then collect SF conflict samples

• In user space, attackers can only control the bits in b. and c.
• By collecting a cache EV, we get a set of data with the same bits in b. and c.

• The bits in a. is out of attackers’ control, they are “unknown bits”
• The bits value follow a uniform distribution

• Collect k data to form an SF EV?
• Possibility of a success collection

24

SF EV Construction

Probabilistic Approach to Construct SF EV

L2 Set Index

4K Page OffsetPhysical Frame Number

𝑏0

SF Set Index Line OffsetSF Tag

𝑏5𝑏19 𝑏11𝑏31

Line OffsetL2 Cache Tag

𝑏16 𝑏8SF Bank Hash

a. b. c.

• Feasible to construct an SF EV on a big core (A73)

• Infeasible to construct on a little core (A53)
• The number of unknown bits increases ⬆

• The possibility of a success collection decreases ⬇

• However,
• Once constructed, it doesn’t matter attackers are on big or little cores

• In covert channel communication, one can always construct SF EVs
25

SF EV Construction

Probabilistic Approach to Construct SF EV

•Reverse engineering of the directory named Snoop Filter (SF)
• Structure and Properties
• SF eviction set construction

•Compare SF with cache in real attack applications
• Covert channel
• Attack Cryptographic algorithm

• RSA

• AES

• TrustZone scenario
26

We introduce…

• Create stealthy communication via SF side-channel

• Results
• Achieve the same level of performance as cache

covert channel in cross-core scenario

• In the cross-cluster scenario, the performance is

still satisfying

• We recommend SF covert channel!
27

Side-channel attacks: SF vs Cache?

Covert channel communication

28

Side-channel attacks: SF vs Cache?

128-bit T-table based AES decryption in OpenSSL 1.1.1a

First round attack Last round attack

• Since RSA attack only happens in the cross-core / cross-cluster scenarios, we
are the first to implement RSA side-channel attack on ARM CPUs.
• 37 samples on average are sufficient to fully recover the private key

29

Side-channel attacks: SF vs Cache?

Sliding-window Based RSA in MbedTLS 2.26.0, window_size = 1

• Kernel privileged attackers in the TrustZone scenario is capable to conduct
interrupt-based high-precision attacks [1]
• Single trace profile is enough to recover the key

• SF-Prime+Probe breaches
• Exponent blinding defence

• Strict cache clean defence

30

Side-channel attacks: SF vs Cache?

Attack ARM TrustZone, Sliding-window Based RSA, window_size = 6

• SF is more practical than cache in cross-core and cross-cluster scenario

• Satisfying performance

• Harder to defend, especially in TrustZone scenario

31

Attack directories on ARM big.LITTLE Processors!

Thanks for listening!

Reported by Zili KOU (zkou@connect.ust.hk)

32

Page 3:
[1] G. Irazoqui et al., “Cross processor cache attacks,” in ASIACCS, 2016.
[2] F. Yao et al., “Covert timing channels exploiting cache coherence hardware: Characterization and defense,” International Journal of Parallel Programming, 2019.
[3] Y. Yarom et al., “Flush+reload: A high resolution, low noise, l3 cache side-channel attack,” in USENIX Sec., 2014.
[4] D. Gruss et al., “Flush+flush: a fast and stealthy cache attack,” in DIMVA, 2016.
[5] F. Liu et al., “Last-level cache side-channel attacks are practical,” in IEEE S&P, 2015.
Page 8:
[1] M. Lipp et al., “Armageddon: Cache attacks on mobile devices,” in USENIX Sec., 2016.
[2] N. Zhang et al., “Truspy: Cache side-channel information leakage from the secure world on ARM devices.” IACR Cryptol., 2016.
[3] X. Zhang et al., “Return-oriented flush-reload side channels on ARM and their implications for android devices,” in CCS, 2016.
[4] H. Lee et al., “Hardware-based flush+reload attack on Armv8 system via ACP,” in ICOIN, 2021.
[5] G. Haas et al., “itimed: Cache attacks on the apple a10 fusion soc,” IACR Cryptol., 2021.
[6] K. Ryan, “Hardware-backed heist: Extracting ECDSA keys from qualcomm’s trustzone,” in CCS, 2019.
[7] Z. Kou et al., “Load-step: A precise trustzone execution control framework for exploring new side-channel attacks like flush+evict,” in DAC, 2021.
[8] M. Green et al., “Autolock: Why cache attacks on ARM are harder than you think,” in USENIX Sec., 2017.
Page 31:
[1] Z. Kou et al., “Load-step: A precise trustzone execution control framework for exploring new side-channel attacks like flush+evict,” in DAC, 2021.

	Default Section
	Slide 1: Attack Directories on ARM big.LITTLE Processors
	Slide 2: Cache Side-channel Attacks
	Slide 3: Cache Side-channel Attacks
	Slide 4: Cache Side-channel Attacks
	Slide 5: Evict-based Cache Side-channel Attacks
	Slide 6: ARM big.LITTLE Arch
	Slide 7: Attack on ARM big.LITTLE Arch
	Slide 8: Cache Side-channel Attacks on ARM CPUs
	Slide 9: Our Contribution
	Slide 10: We introduce…
	Slide 11: General design of SF
	Slide 12: Experiment Platforms
	Slide 13: Hints and Assumptions
	Slide 14: Find the first SF Eviction Set (EV)
	Slide 15: Reverse engineering
	Slide 16: Reverse engineering
	Slide 17: Reverse engineering
	Slide 18: Reverse engineering
	Slide 19: Reverse engineering
	Slide 20: Reverse engineering
	Slide 21: Reverse engineering
	Slide 22: We introduce…
	Slide 23: SF EV Construction
	Slide 24: SF EV Construction
	Slide 25: SF EV Construction
	Slide 26: We introduce…
	Slide 27: Side-channel attacks: SF vs Cache?
	Slide 28: Side-channel attacks: SF vs Cache?
	Slide 29: Side-channel attacks: SF vs Cache?
	Slide 30: Side-channel attacks: SF vs Cache?
	Slide 31: Attack directories on ARM big.LITTLE Processors!
	Slide 32: Thanks for listening!

