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•Cache side-channel
• Utilize the timing difference between cache hit and miss

•Attack scenarios
• covert channel communications
• extracting cryptographic keys (RSA, AES, etc.)
• speculative execution attacks
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Cache Side-channel Attacks

Shared cache lines

Cache hit: ≈ 20 cpu cycles

Cache miss: ≈ 100 cpu cycles



• Three types
• Coherence-based: [1], [2]

• Exploit the cache coherence protocol between cores

• Flush-based: Flush+Reload [3], Flush+Flush [4]
• Clean and flush a cache line, and then reload/flush again

• Evict-based: Prime+Probe [5]
• Evict, occupy, and reload a whole cache set by using the “eviction set”
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Cache Side-channel Attacks
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• Practicality?
• Cache cleaning instructions is usually suggested to be forbidden

• Shared memory with victim is impossible without page-sharing or memory deduplication

• Evict-based attacks utilize “Eviction Set (EV)”
• Lower precision, though

• More feasible and practical
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Cache Side-channel Attacks

Cache cleaning instructions Shared memory space

Coherence-based Not required Required

Flush-based Required Required

Evict-based Not required Not required



•Prerequisites
• Shared cache between attacker and victim

• Usually exist on x86 CPUs, how about ARM CPUs?

• Inclusive cache hierarchy
• ARM CPUs usually adopt non-inclusive cache

5

Evict-based Cache Side-channel Attacks



•Classic IPs
• 4 A53 + 4 A73 cores
• CCI-500/550 interconnect

•Attack scenarios
• Single-core
• Cross-core
• Cross-cluster
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•Attack scenarios
• Single-core

• L1 is easy to attack!

• Cross-core
• L2 is usually non-inclusive

• Cross-cluster
• Even no shared cache!
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•Research gap
• Two cross-core attacks are limited by [8]
• No cross-cluster evict-based attacks on ARM
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Cache Side-channel Attacks on ARM CPUs



• Reveal and dive into the directories on ARM big.LITTLE CPUs

• Overcome the difficulties when attacking ARM big.LITTLE CPUs

• Fill the gap of cross-core / cross-cluster attacks
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Our Contribution



•Reverse engineering of the directory named Snoop Filter (SF)
• Structure and Properties
• SF eviction set construction

•Compare SF with cache in real attack applications
• Covert channel
• Attack Cryptographic algorithm

• RSA

• AES

• TrustZone scenario
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We introduce…



•A directory structure to store
• Tags of cached data in each core
• Cache coherence states
• …

•Avoid broadcast every load/store 
request, reduce the bus overhead
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General design of SF



•Affected SoCs
• ARM SoCs with CCI-500/550
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Experiment Platforms



• SF is not well documented and not yet explored!
• We only got limited hints from official manuals
• We must make “conservative” assumptions

•Assumptions
• 8-way set-associative structure
• May or may not be Bank-sliced structure
• SF strictly contains all cached data, otherwise cannot keep the coherence

• SF conflicts trigger “back-invalidate”
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Hints and Assumptions



• Like cache EV, there exists the SF index portion

• Dedicated search algorithm
• Allocate a set of data with the same lower-n bits of their address

• Search out the first SF EV by timing difference
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Find the first SF Eviction Set (EV)

Memory for a 4 GB address space from the 
aspect of the 4 KB page, L1 cache, and the 
L2 cache.



• Test cache and SF EVs with different size

• lines’ slopes depict the capacity of an SF set and a cache set

• Confirmed that SF is 8-way set associative
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Reverse engineering

Set Associativity



• Possible replacement policy
• Least Recently Used (LRU)

• Random Replacement

• …

• Place the data of a SF EV “in order”, observe which data would be 
selected to replace
• Observed an even distribution of the 8 addresses

• Most possibly Random Replacement
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Reverse engineering

Replacement Policy



• how many mutually exclusive EVs are in a contiguous memory space?

• There are 16384 SF sets
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Reverse engineering

Set Size



• The address portion used to index which SF set to map

• Check the identical bits of data in an SF EV

• 8th bit to 19th bit (interesting that is doesn’t follow the line offset bits)
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Reverse engineering

Set Index Portion
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• Is SF bank-sliced?
• Set index portion has only 11 bits, while Set size is 16384

• Indicate there are 8 SF banks

• Reverse engineered the bank hash function by dedicated algorithm
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Reverse engineering

Bank Hash Function



• 8-way set associative

• Random replacement policy

• 16384 SF sets

• Index mechanism (index portion and bank hash function)
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Reverse engineering

Summary

Memory for a 4 GB address space from the aspect of the 4 KB page, L2 cache, and the SF.

L2 Set Index
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Line OffsetL2 Cache Tag
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• SF-Prime+Probe

1. Randomly collect an address and construct its corresponding SF EV.

2. Access the address to cache it well and then access the SF EV

3. Check if the data is still cached.
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Reverse engineering

Verify the attack surface of the SF

Passed the verification in all three scenario: 
Single-core, Cross-core, and Cross-cluster !



•Reverse engineering of the directory named Snoop Filter (SF)
• Structure and Properties
• SF eviction set construction

•Compare SF with cache in real attack applications
• Covert channel
• Attack Cryptographic algorithm

• RSA

• AES

• TrustZone scenario
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We introduce…



• Cannot directly deal with the SF, instead, we rely on caches to interact with the SF

• No way to distinguish SF conflicts from cache conflicts, as they both behave as cache misses

• SF conflicts appear much less often than cache conflicts

23

SF EV Construction

Construct SF EV in user space is not as easy as cache EV!

We propose,
avoid cache conflicts first, and then collect SF conflict samples



• In user space, attackers can only control the bits in b. and c.
• By collecting a cache EV, we get a set of data with the same bits in b. and c.

• The bits in a. is out of attackers’ control, they are “unknown bits”
• The bits value follow a uniform distribution

• Collect k data to form an SF EV?
• Possibility of a success collection
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SF EV Construction

Probabilistic Approach to Construct SF EV
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• Feasible to construct an SF EV on a big core (A73)

• Infeasible to construct on a little core (A53)
• The number of unknown bits increases ⬆

• The possibility of a success collection decreases ⬇

• However,
• Once constructed, it doesn’t matter attackers are on big or little cores

• In covert channel communication, one can always construct SF EVs
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SF EV Construction

Probabilistic Approach to Construct SF EV



•Reverse engineering of the directory named Snoop Filter (SF)
• Structure and Properties
• SF eviction set construction

•Compare SF with cache in real attack applications
• Covert channel
• Attack Cryptographic algorithm

• RSA

• AES

• TrustZone scenario
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We introduce…



• Create stealthy communication via SF side-channel

• Results
• Achieve the same level of performance as cache 

covert channel in cross-core scenario

• In the cross-cluster scenario, the performance is 

still satisfying

• We recommend SF covert channel!
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Side-channel attacks: SF vs Cache?

Covert channel communication
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Side-channel attacks: SF vs Cache?

128-bit T-table based AES decryption in OpenSSL 1.1.1a

First round attack Last round attack



• Since RSA attack only happens in the cross-core / cross-cluster scenarios, we 
are the first to implement RSA side-channel attack on ARM CPUs.
• 37 samples on average are sufficient to fully recover the private key
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Side-channel attacks: SF vs Cache?

Sliding-window Based RSA in MbedTLS 2.26.0, window_size = 1



• Kernel privileged attackers in the TrustZone scenario is capable to conduct 
interrupt-based high-precision attacks [1]
• Single trace profile is enough to recover the key

• SF-Prime+Probe breaches 
• Exponent blinding defence

• Strict cache clean defence
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Side-channel attacks: SF vs Cache?

Attack ARM TrustZone, Sliding-window Based RSA, window_size = 6



• SF is more practical than cache in cross-core and cross-cluster scenario

• Satisfying performance

• Harder to defend, especially in TrustZone scenario
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Attack directories on ARM big.LITTLE Processors!



Thanks for listening!

Reported by Zili KOU (zkou@connect.ust.hk)
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