IEEE/ACM l c

2022 INTERNATIONAL B
CONFERENCEON

COMPUTER-AIDED -
DESIGN D

g ¢
Attack Directories on ARM

big.LITTLE Processors

Zili KOU 1, Wenjian HE 1, Wei ZHANG 1, and Sharad Sinha 2

1 Hong Kong University of Science and Technology

2 Indian Institute of Technology Goa

Cache Side-channel Attacks

* Cache side-channel
 Utilize the timing difference between cache hit and miss

®

Cache hit: = 20 cpu cycles

Cache miss: = 100 cpu cycles

Shared cache lines

* Attack scenarios
e covert channel communications
 extracting cryptographic keys (RSA, AES, etc.)
* speculative execution attacks

Cache Side-channel Attacks

* Three types

 Coherence-based: [1], [2]
* Exploit the cache coherence protocol between cores
* Flush-based: Flush+Reload [3], Flush+Flush [4]
* Clean and flush a cache line, and then reload/flush again
e Evict-based: Prime+Probe [5]
e Evict, occupy, and reload a whole cache set by using the “eviction set”

Tag Data Tag Data Tag Data Tag Data

line0 Owned by attacker line 0 line 0 line 0
line 1 line 1 |:> line 1 — line 1
: Owned by victim : : : : g : :
[| [- [|tne1s [[[= [[|tne1s [| | - [|lne1s [| | - [|lne1s
Cache Set 77 Cache Set 77 Cache Set 77 Cache Set 77

ig

Empty state Prime Wait Probe .,)‘

F-11)

Cache Side-channel Attacks

_ Cache cleaning instructions | Shared memory space

Coherence-based Not required Required
Flush-based Required Required
Evict-based Not required Not required

* Practicality?
* Cache cleaning instructions is usually suggested to be forbidden
e Shared memory with victim is impossible without page-sharing or memory deduplication

 Evict-based attacks utilize “Eviction Set (EV)”

* Lower precision, though
* More feasible and practical

Evict-based Cache Side-channel Attacks

* Prerequisites
e Shared cache between attacker and victim

]

* Inclusive cache hierarchy
 ARM CPUs usually adopt non-inclusive cache

L 38
==ﬂ“,!‘

ARM big.LITTLE Arch

¢ ClaSS|C |PS [Interrupt Controller]

*4 A53 +4 A/3 cores I S~ ¢ ™

' / : \ Big Core /GPU \
e CCI-500/550 interconnect {L'tt'e Core JJD e
. [L1 Cache] \\
e Attack scenarios S I |
ache L2 Cache GPU Cache
* Single-core \ == S — —
* Cross-core [| Snoop Filter] Arm CCI-5XX J

e Cross-cluster))

] [Peripheral]

[Memory Controller

L 38
==ﬂ“,!‘

Attack on ARM big.LITTLE Arch

e Attack scenarios
e Single-core

* Cross-core

e | 2 is usually non-inclusive

e Cross-cluster
* Even no shared cache!

Interrupt Controller

¢
I /Big Core \
/Little Core \ /GPU \
& — JJD \[\\\Ll Cache]
\[L2 Cache] L2 Cache L \[GPU Cache]
¢ 9 %
[[Snoop Filter] Arm CCI-5XX J
 J s

|

Memory Controller

] [Peripheral]

Re&
DERD
omo
SESFEm

Cache Side-channel Attacks on ARM CPUs

TABLE I: EXISTING CACHE SIDE-CHANNEL ATTACKS ON ARM.

Work Single-core Cross-core Cross-cluster
[1] Flush,Evict Evict® Flush,Coherence Coherence
2] Evict — —
[3] — Flush® —
4] Flush — —
[5] Evict — —
6] Evict — —
[7] Evict — —
This paper Evict Evict Evict

2However, limited by AutoLock [8].

* Research gap
* Two cross-core attacks are limited by [8]
* No cross-cluster evict-based attacks on ARM

Our Contribution

* Reveal and dive into the directories on ARM big.LITTLE CPUs

* Overcome the difficulties when attacking ARM big.LITTLE CPUs

* Fill the gap of cross-core / cross-cluster attacks

We introduce...

* Reverse engineering of the directory named Snoop Filter (SF)

e Structure and Properties
* SF eviction set construction

e Compare SF with cache in real attack applications

 Covert channel

* Attack Cryptographic algorithm
* RSA
* AES

* TrustZone scenario

cAg
o BIE
BERD
;Eg&a
Sxt 4

General design of SF

CPUO (%:PU41
* A directory structure to store m s m
* Tags of cached data in each core T T

S't?l':ie a%dgc;ss t?ag Ta"clheéfocksl stﬁe adodrggsz ;‘ag ﬁclhe.?;’ocksl
* Cache coherence states e IR
. i i
. Snoop Bus !

Snoop-Filter

* Avoid broadcast every load/store moster [dddicss g | _siatc

request, reduce the bus overhead

CPU 1 Oxe9922e... exclusive

Fig. 3. General design of the snoop filter.

E-11)

Experiment Platforms

TABLE II: EXPERIMENT PLATFORMS.

Hikey960

Hikey970

Honor View 10

SoC

Kirin 960

Kirin 970

Kirin 970

Processor

4 Cortex A73 as big cores, 4 Cortex AS53 as little cores.

L.1-Data

A73: 4-way, 256 sets

AS53: 4-way, 128 sets

.2 Cache

A73: 16-way, 2048 sets

AS53: 16-way, 512 sets

OS

Buildroot Linux 5.5 \ Debian Linux 4.9 \ Android 9.0

e Affected SoCs

e ARM SoCs with CCI-500/550

233

)

1 A
022 INTI wmiwﬂ.c
CONFERENCE ON
NPUTER-ADED
DESIGN

Hints and Assumptions

* SF is not well documented and not yet explored!
* We only got limited hints from official manuals
* We must make “conservative” assumptions

* Assumptions
* 8-way set-associative structure
* May or may not be Bank-sliced structure
* SF strictly contains all cached data,
* SF conflicts trigger “back-invalidate”

Find the first SF Eviction Set (EV)

* Like cache EV, there exists the SF index portion

* Dedicated search algorithm
e Allocate a set of data with the same lower-n bits of their address
e Search out the first SF EV by timing difference

>1.0

SF Set Index Portion ???

Physical Frame Number

4K Page Offset

L1 Cache Tag L1 Set Index |Line Offset
LLC Cache Tag LLC Set Index Line Offset
ib31 !blﬁ ;b13 1by1 ;bs by!

Memory for a 4 GB address space from the
aspect of the 4 KB page, L1 cache, and the
L2 cache.

NW Random collection (9 addresses)
472922 SF conflict EV (9 addresses)
B Random collection (17 addresses)
EEEEE Cache conflict EV (17 addresses)

7 o
,:%f/’,,, e

200 400 600 800 1000 1200 1400
Access Latency (Cycles)
Fie. 3. Latencies of accessine a cache (or SF) conflict EV.

ig
INTERNATIONAL
)l CEON

253
-~

Reverse engineering

Set Associativity

e Test cache and SF EVs with different size

P>
O 5000/ P> SFEV
= Cache EV .
= 4000 »
%) Random Collection . » -
§ 3000 = .
© 2000 . [
%) -
§1000 PSR
= 4 16 50

8 12
Set Size of EV

Fig. 4. Access latencies of EVs of different sizes. SF conflicts happen when
the size of an SF EV is larger than 8.

* lines’ slopes depict the capacity of an SF set and a cache set
* Confirmed that SF is 8-way set associative

=N 7) 4

Reverse engineering

Replacement Policy

* Possible replacement policy
e Least Recently Used (LRU)
 Random Replacement

* Place the data of a SF EV “in order”, observe which data would be
selected to replace
 Observed an even distribution of the 8 addresses

* Most possibly Random Replacement

jif \
2 :rnmrw»:rmcc 1
CONFERENCE ON |
COMPUTER-ADED
DESIGN

Sy

Reverse engineering

Set Size

* how many mutually exclusive EVs are in a contiguous memory space?

TABLE III: NUMBER AND S1ZES OF SF EVs.

Contiguous Memory Number of SF EVs Set Size

8 MB 16384 8
32 MB 16384 32
512 MB 16384 512

1 GB 16384 1024

* There are 16384 SF sets

ig
INTERNATIONAL
)l CEON

=N 7)

Reverse engineering

Set Index Portion

* The address portion used to index which SF set to map

e Check the identical bits of data in an SF EV

Physical Frame Number

4K Page Offset

SF Tag

SF Set Index Line Offset

! "
bsy SF Bank<+— (Hash)

° 8th bit to 19th bit (interesting that is doesn’t follow the line offset bits)

D19

11 bg Ibs

b,

Reverse engineering

Bank Hash Function

* |s SF bank-sliced?
* Set index portion has only 11 bits, while Set size is 16384
e Indicate there are 8 SF banks

e Reverse engineered the bank hash function by dedicated algorithm

TABLE IV: REVERSE ENGINEERED BANK HASH FUNCTIONS.

H |31]30]29]28]27]26]25]24]23]22]21]20|10]18]17]16|15]14]13]12|11]10] 9] 8] 7| 6
ha ® @ @ D ho = bag & bag @ b1s D bg
Kirin 970 | b1 & & hi1 = b11 & by
ho S P ARG & | ho = bag &b bag & bs & b
ho b B b ho = bog @ bis & bs
Kirin 960 | b4 & e, & & D hi1 = bog @ bag & big B b7 B by
ho & TN T Y P | ho = baog P bg
*Bits with ? can be revealed if we have perfect performance counters, which are lacking in CCL.

DESIGN

Reverse engineering

summary

* 8-way set associative
 Random replacement policy
* 16384 SF sets

* Index mechanism (index portion and bank hash function)

Physical Frame Number

4K Page Offset

L2 Cache Tag L2 Set Index Line Offset

SF Tag SF Set Index Line Offset

g | : : : | :

b3, SF Bank<+— @ 19 b6 b1 bg ibs by

Memory for a 4 GB address space from the aspect of the 4 KB page, L2 cache, and the SF.

1 \
2m2 lflTFRVU-TENALc f
CONFERENCE ON ‘
OPMPUTER-ADED 4
DESIGN

=N 7)

Reverse engineering

Verify the attack surface of the SF

e SF-Prime+Probe
1. Randomly collect an address and construct its corresponding SF EV.
2. Access the address to cache it well and then access the SF EV

3. Check if the data is still cached.

Passed the verification in all three scenario:
Single-core, Cross-core, and Cross-cluster !

Sy

jif \
2 :rnmrw»:rmcc 1
CONFERENCE ON |
JOMPUTER-ADED
DESIGN

We introduce...

* Reverse engineering of the directory named Snoop Filter (SF)
 Structure and Properties
* SF eviction set construction

e Compare SF with cache in real attack applications

 Covert channel

* Attack Cryptographic algorithm
* RSA
* AES

* TrustZone scenario

245
BEa3
gons
:«555
=N)

SF EV Construction

Construct SF EV in user space is not as easy as cache EV!

* Cannot directly deal with the SF, instead, we rely on caches to interact with the SF
* No way to distinguish SF conflicts from cache conflicts, as they both behave as cache misses

e SF conflicts appear much less often than cache conflicts

We propose,
avoid cache conflicts first, and then collect SF conflict samples

F-11)

2022 INTERNATIONAL 1
CONFERENCE ON |
QOMPUTER-ADED

DESIGN n

SF EV Construction

Probabilistic Approach to Construct SF EV

* In user space, attackers can only control the bits in b. and c.
» By collecting a cache EV, we get a set of data with the same bits in b. and c.

* The bits in a. is out of attackers’ control, they are “unknown bits”
* The bits value follow a uniform distribution Punknewn bits = {00...0}3) = ...

S
... = P(unknown bits = {11...1},) = 16asd
* Collect k data to form an SF EV?
. _ Physical Frame Number 4K Page Offset
» Possibility of a success collection :
P(success collection) L2 Cache Tag L2 Set Index Line Offset
h .
= Z P(success collection: i addresses case) >F Tag Jy Set Index Line Offset
=9 — T —1

b6 b11 bg bs b

16384 [i S\ s N\ bs1 sFBanke—CHash) o 9
B E——— l1— — W’R/_J
<5 \k (16384)(16384) 4 '

: . b C ic. %
; . . . <
C 2022 INTERNATIONAL
CONFERENCE ON
JOMPUTER-ADED
DESIGN n

[
M;_

E-11)

SF EV Construction

Probabilistic Approach to Construct SF EV

o FeaSible tO ConStrUCt an SF EV on a b|g core (A73) TABLE V: ATTEMPTS FOR A SUCCESS COLLECTION.

N (Size of Cache EV) Averaged Attempts Success Rate

64 3224.22 0.564
128 2936.57 0.826
256 2887.29 0.924
512 2821.41 0.929
1024 2818.92 0.944
256 3082.00 0.921
b 256 3557.54 0.89

agvaluated on Hikey960. Pevaluated on Honor View 10.

* Infeasible to construct on a little core (A53)
* The number of unknown bits increases 1
e The possibility of a success collection decreases {

* However,

* Once constructed, it doesn’t matter attackers are on big or little cores
* |In covert channel communication, one can always construct SF EVs o)

We introduce...

* Reverse engineering of the directory named Snoop Filter (SF)
 Structure and Properties
* SF eviction set construction

* Compare SF with cache in real attack applications
* Covert channel

* Attack Cryptographic algorithm
* RSA
* AES

* TrustZone scenario

245
BEa3
gons
:«555
=N)

Side-channel attacks: SF vs Cache?

Covert channel communication

 Create stealthy communication via SF side-channel

Sender

Receiver

Handshake P Transmission

———

N bits

e Results

Achieve the same level of performance as cache
covert channel in cross-core scenario

In the cross-cluster scenario, the performance is
still satisfying

We recommend SF covert channel!

TABLE VI: PRIME+PROBE COVERT CHANNELS.

Sender &
Receiver

N

Ts
/ us

T,
/ us

Error
Rate

aBW
/ bps

Cross-
cluster?

Cache AS53—AS5S3

92

12.5

12.5

0.050

21937

X

AT3—AT3

92

4.5

4.5

0.049

51901

SF AS53—AS53

90

9.0

9.0

0.053

21459

AT3—AT3

90

6.5

6.5

0.052

42726

AS3—AT3

78

23.0

16.0

0.051

18612

AT3—AS53

78

18.0

26.0

0.047

18561

NN X x| X

2Bandwidth

Side-channel attacks: SF vs Cache?

128-bit T-table based AES decryption in OpenSSL 1.1.13

Cache-Prime+Probe
Cross-core

Cache Prlme+Probe

w ! '\v' lM L |
i ‘,‘”nw .'h M‘h 'fﬁ I |
%q i *u

| w hl m .

SF-Prime+Probe
Cross -core

SF- ane+Probe
Cross-cluster

e i

J%“ W' ‘ M{l\izuﬁ M" M

b rr} *l‘
m“ B . hn.. “l .”nj I ,.m..

'M{"’A " Plaintext Byte

T-table Entry

hM

Fig. 7. Secret-dependent access patterns of T-table based AES.

First round attack

Recovered Bits

130
1204
1104
1004
-« Same-core, Cache, A5§
90 Same-core, Cache, A73
Same-core, SF, AS3
Same-core, SF, A73
80; Cross-core, SF, A53
Cross-core, SF, A73
701 ; Cross-cluster, SF, A53
// \ Cross-cluster, SF, A73 /
60! : . :
0 20 40 60 80 100 120 140 160

Encryption Number / x1000
Fig. 8. Recovered bits increase with the encryption.

Last round attack

Side-channel attacks: SF vs Cache?

Sliding-window Based RSA in MbedTLS 2.26.0, window size =1

* Since RSA attack only happens in the cross-core / cross-cluster scenarios, we
are the first to implement RSA side-channel attack on ARM CPUs.

e 37 samples on average are sufficient to fully recover the private key

)
[
(=)}
=
<
'_'l.

1400
1200
1000+
800+
600+
400
200

- - i e n

Access Latency (Cycles

5300 5320 5340 5360 5380 5400
Sampling Epoch

Fig. 9. Secret-dependent memory access of the sliding-window based RSA.
From the access latency generated by SF-Prime+Probe, we can recover the
key bits as “10111".

2022 INTERNATION
CONFERENCE ON
2 9:f.rmzm\n51:
DESIGN

Side-channel attacks: SF vs Cache?

Attack ARM TrustZone, Sliding-window Based RSA window_size =6

e Kernel privileged attackers in the TrustZone scenario is capable to conduct

interrupt-based high-precision attacks [1] 150100010/ 100111 1101101110141 111301 .. -
* Single trace profile is enough to recover the key 200, | ——n
e SF-Prime+Probe breaches s i o
N & 300
* Exponent blinding defence - | s .
 Strict cache clean defence &.. — bl S
65507 —————
6600 1:;]
EGTSO | I T———
mGBUD ="
6850 ==
3400 3500 3700 3800 3900

Fig. 10. Secret-dependent access pattern of the sliding-window based RSA.
The upper one is generated by Cache-Prime+Probe in the single-core scenario.
The lower one is generated by SF-Prime+Probe in the cross-cluster scenario

Interrupt Epoch

when the strict cache clean defense is applied.

Attack directories on ARM big.LITTLE Processors!

* SF is more practical than cache in cross-core and cross-cluster scenario
e Satisfying performance

* Harder to defend, especially in TrustZone scenario

Thanks for listening!

Page 3:

[1] G. Irazoqui et al., “Cross processor cache attacks,” in ASIACCS, 2016.

[2] F. Yao et al., “Covert timing channels exploiting cache coherence hardware: Characterization and defense,” International Journal of Parallel Programming, 2019.
[3] Y. Yarom et al., “Flush+reload: A high resolution, low noise, 13 cache side-channel attack,” in USENIX Sec., 2014.

[4] D. Gruss et al., “Flush+flush: a fast and stealthy cache attack,” in DIMVA, 2016.

[5] F. Liu et al., “Last-level cache side-channel attacks are practical,” in IEEE S&P, 2015.

Page 8:

[1] M. Lipp et al., “Armageddon: Cache attacks on mobile devices,” in USENIX Sec., 2016.

[2] N. Zhang et al., “Truspy: Cache side-channel information leakage from the secure world on ARM devices.” IACR Cryptol., 2016.

[3] X. Zhang et al., “Return-oriented flush-reload side channels on ARM and their implications for android devices,” in CCS, 2016.

[4] H. Lee et al., “Hardware-based flush+reload attack on Armv8 system via ACP,” in ICOIN, 2021.

[5] G. Haas et al., “itimed: Cache attacks on the apple a10 fusion soc,” IACR Cryptol., 2021.

[6] K. Ryan, “Hardware-backed heist: Extracting ECDSA keys from qualcomm’s trustzone,” in CCS, 2019.

[7] Z. Kou et al., “Load-step: A precise trustzone execution control framework for exploring new side-channel attacks like flush+evict,” in DAC, 2021.
[8] M. Green et al., “Autolock: Why cache attacks on ARM are harder than you think,” in USENIX Sec., 2017.

Page 31:

[1] Z. Kou et al., “Load-step: A precise trustzone execution control framework for exploring new side-channel attacks like flush+evict,” in DAC, 2021.

Reported by Zili KOU (zkou@connect.ust.hk)

	Default Section
	Slide 1: Attack Directories on ARM big.LITTLE Processors
	Slide 2: Cache Side-channel Attacks
	Slide 3: Cache Side-channel Attacks
	Slide 4: Cache Side-channel Attacks
	Slide 5: Evict-based Cache Side-channel Attacks
	Slide 6: ARM big.LITTLE Arch
	Slide 7: Attack on ARM big.LITTLE Arch
	Slide 8: Cache Side-channel Attacks on ARM CPUs
	Slide 9: Our Contribution
	Slide 10: We introduce…
	Slide 11: General design of SF
	Slide 12: Experiment Platforms
	Slide 13: Hints and Assumptions
	Slide 14: Find the first SF Eviction Set (EV)
	Slide 15: Reverse engineering
	Slide 16: Reverse engineering
	Slide 17: Reverse engineering
	Slide 18: Reverse engineering
	Slide 19: Reverse engineering
	Slide 20: Reverse engineering
	Slide 21: Reverse engineering
	Slide 22: We introduce…
	Slide 23: SF EV Construction
	Slide 24: SF EV Construction
	Slide 25: SF EV Construction
	Slide 26: We introduce…
	Slide 27: Side-channel attacks: SF vs Cache?
	Slide 28: Side-channel attacks: SF vs Cache?
	Slide 29: Side-channel attacks: SF vs Cache?
	Slide 30: Side-channel attacks: SF vs Cache?
	Slide 31: Attack directories on ARM big.LITTLE Processors!
	Slide 32: Thanks for listening!

