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Security in Computing Systems

• Essential

• Suffers from software vulnerabilities…
• Insecure codes can be exploit, e.g., stack overflow

• Operating system(OS) itself has flaws

• Forever on the way to fix up!

source: cve.mitre.org
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Trusted Execution Environment (TEE)

• Hardware level isolate
• Enclave or outside

• Commercial products
• Intel SGX

• Arm TrustZone

Source: Intel® Software Guard Extensions Tutorial Series
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Upgraded protection from TEE
• Strong isolation

• Accessing to secure memory is encrypted, authorized, and attested

• Fail to defend μarch side-channel attackers
• Secrets can still be leaked by (cache) side-channels

• Cache Attacks on Intel SGX [1], Armageddon[2]

• Speculative execution vulnerabilities still exits
• Foreshadow [3]…

• TEE is more privileged than OS
• Protects enclaves against even “malicious OS”
• Kernel (privileged) attacker should be considered!
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Kernel Attacker on Intel SGX

Source: [4]

High precision hardware timer on intel CPU

SGX-Step [4] Interrupt the enclaves per instruction, 

and then detects the μarch side-channel
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Kernel Attacker on Intel SGX
User-space attack Kernel-privileged attack

Victim User application Trusted application in enclave

Attacker User application Malicious OS

Noise high low

Temporal 
resolution

Low, as victim and attacker run simultaneously High, depends on the interrupt frequency

detect detect detect

…
Interrupt,
then detect

…
release

Interrupt,
then detect

release

…
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Research Gap

• User-space attacker on Arm TrustZone
• Cache side-channel attacks still work on TrustZone [2][7]

• Kernel attacker on Arm TrustZone?
• One nonsystematic work exits [8]

• Newly Arm-specific μarch side-channels?

• Maximum temporal resolution?
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Arm TrustZone, in hardware

A53 Cluster

A53
Core

Memory Filter

A73 Cluster

DRAM Memory

Other 

Components

A53
Core

A53
Core

A73
Core

A73
Core

A73
Core

A53
Core

A73
Core

• Non-secure bit (NS-bit)
• In each core’s register

• In tags of cache lines

• Memory filter
• Isolate the secure memory

9



Arm TrustZone, in software

Normal OS
EL1

Hypervisor
EL2

Secure WorldNormal World

Trust OS
S-EL1

Trust Apps
S-EL0

Secure Monitor
EL3

EL0
Applications

• Exception Level (EL)
• Distinguish privileges

• World switch
• Ensured by concrete protocol

• “smc” instruction
• Communicate between secure 

world and normal world.
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Threat Model

• Some cryptography program is implemented at S-EL0

• Attacker has full privilege of EL1 (Linux kernel)
• Can install an external kernel module

• Assign any core to run a Trusted Application

• Obey the threat model of TrustZone
• No exploit software vulnerabilities

• No privilege at EL3, S-ELs
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Experiment Platform

Linux 5.5
EL1

EL2

Secure WorldNormal World

OPTEE 3.8.0
S-EL1

MbedTLS 2.26.0  
S-EL0

Trusted Firmware-A 2.2
EL3

EL0

In software,

“TrustedFirmware.org”: the reference implementation of TrustZone

In Hardware,

Hikey960 board with Kirin 960 SoC

Arm big.LITTLE architecture,

4 Cortex A53s and 4 Cortex A73s
(533 - 1844 MHz) (903 - 2362 MHz)
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Load-Step

• A high precision framework to control the execution of TrustZone
• Periodically generate interrupt forward to secure world

• Detect μarch side-channels for every interrupt epochs 

• Two challenges
• Framework implementation

• Stable with Low-noise

• Timing source
• High interrupt frequency
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Load-Step: design 

• Designed as an external kernel module
• Exchange some kernel function, e.g., irq_handler()

• Cross-core interrupt instead of self-core interrupt
• TrustZone “occupy” the whole physical core
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Load-Step: structure

• Two-core framework
• Auxiliary core

• Victim core
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Load-Step: structure

• Auxiliary core receives a time-up even from “timing source”
• periodically
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Load-Step: structure

• Generate a cross-core interrupt (IRQ) forwarding to victim core
• Achieved by Arm Generic Interrupt Controller (Arm-GIC)

• This IRQ is an “insecure IRQ” (IRQ from normal world)
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Load-Step: structure

• “Insecure IRQ” must be handled by normal world!
• World Switch happens
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Load-Step: structure

• Detection block
• Collect data in μarch 

side-channel
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• Preparation block
• Prepare, pre-train μarch 

components, if needed



Load-Step: structure

• Overview
• Timing source is essential 

• Frequency determines “temporal resolution”

• Stability determines “precision”
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Timing source

• Hardware Timers
• Exist in each core

• Generate Hardware IRQ once time up

• Frequency is usually fixed, typically ranges from 1MHz-50MHz
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Timing source

• Software Timers
• Finite count down loop

• Check “cycle counter” of core

22



Timing source

• Hardware or Software Timers?
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Reliability Temporal Resolution

Hardware Timer Few jitters 200 ns to 1000 ns (Ours: 500 ns)

Software Timer More software jitters 1 ns in a 1 GHz core



Temporal Resolution
• Benchmark trusted application

• Load data that maps to every cache set, in order
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Temporal Resolution
• Prime+Probe reinforced by Load-Step

• Detection block: “Probe” every L2 cache sets

• Preparation block: “Prime” every L2 cache sets

• CPU: 512 sets with 16 way set associative
• Load 16 data per iteration, totally 512 iterations
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Temporal Resolution
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• Decrease time parameter? 40? 39?
• Endless loop

• interrupt interval is even less than the time of world switch!
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Number of Access
04 3 2 1

Interrupt Epoch (offset)

IRQ interval: 𝑇𝐻 = 𝟒𝟏(2𝑀𝐻𝑧)−1

Temporal Resolution: ≈ 2 loads

• Hardware Timer



Temporal Resolution
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• Software Timer
• Variant-A is better than Variant-B

Variant-B with IRQ interval: 𝑇b = 𝟔𝟖𝟎

Temporal Resolution: ≈ 1.6 loads

Variant-A with IRQ interval: 𝑇b = 𝟓𝟏𝟓

Temporal Resolution: ≈ 1.3 loads



Temporal Resolution
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• Software Timer

Variant-A with IRQ interval: 𝑇b = 𝟓𝟎𝟓

Temporal Resolution: 1 loads per interrupt



Temporal Resolution
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• Achieve load-instruction precision

• Higher precision?
• Hardware timer: not enough temporal resolution

• Software timer: affect by software jitters

Temporal Resolution: 1 loads per interrupt



Flush+Evict
• Arm-specific instruction: “DC CISW”

• Clear and invalidate cache line by set/way

• Flush cache lines without sharing the victim’s memory space

• Flushed cache lines emit “evict transaction”
• Counted by Arm Cache Coherent Interconnect (Arm-CCI)
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Flush+Evict

31

L2 cache

Set 1

Set 2

Set 3

Set 512

···
···

Difference:

2 cache lines are refilled

Measured by:

Time of loading

Read PMU of Core

Prime+Probe

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Prime

···

Set 7

Line 1

Line 2

Line 16

···

Flush

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

··· ···

Set 7

Line 1

Line 2

Line 16

Probe

···

Set 7

Line 1

Line 2

Line 16

···

Evict

Flush+Evict
Difference:

2 cache lines are evicted

Measured by:

Read PMU of ARM-CCI

Prime+Probe attack



Flush+Evict
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Flush+Evict
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Flush+Evict
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Flush+Evict
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Attack RSA in MbedTLS

• RSA sliding window algorithm suffers from cache side-channel 
attacks [8][9]
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Attack RSA in MbedTLS

• “Exponent Blinding” (k=64bit) is imported into MbedTLS
• K bits of exponent is randomized for every decryption

• [9] profiles 11 traces to recover the full key, now need 𝟑. 𝟐𝟕 × 𝟏𝟎𝟏𝟕 traces

• “Exponent Blinding” completely fails if:
• Side-channel attacker can figure out the full by single trace
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Attack RSA in MbedTLS

• Software configurations
• RSA decryption in MbedTLS 2.22.0

• 4096-bit key size

• window_size = 6

• “exponent blinding” is enabled

38



Attack RSA in MbedTLS

• Load-Step & Flush+Evict
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Attack RSA in MbedTLS

• Pattern of pre-compute
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Attack RSA in MbedTLS

• Pattern of multiply()

41

1

C
ac

h
e 

S
et

Interrupt Epoch
42841960 42300···

···

0

6(b)



Attack RSA in MbedTLS

• Pattern of multipliers

42

1

C
ac

h
e 

S
et

Interrupt Epoch
42841960 42300···

···

0

6

(c)



• “decode” one multiplier
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Attack RSA in MbedTLS

• Decode all multipliers and 0’s window
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Attack RSA in MbedTLS
• performance
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Conclusion

• Load-Step: a precise Arm TrustZone execution control framework

• Flush+Evict: a new Arm-specific cache side-channel attack

• Insights into μarch attacks on Arm TrustZone
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Thank you~

Reported by Zili KOU (zkou@connect.ust.hk)
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Source: [5]

Kernel Attacker on Intel SGX

For every interrupt epoch, detect the μarch side-channels…

Cache (by CacheZoom) Page tables (by COPYCAT)

Source: [6]
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Flush-based cache side-channel attack

• Flush+Reload and Flush+Flush
• No need to “fill” a cache set: faster and more precise than Prime+Probe

• Require shared memory space with victim (need to flush by address)
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Impossible! TEE isolates memory between attacker and victim!



Flush+Evict
• No timing difference, but emit a “evict transaction”

• Count the event of “evict transaction”
• No such event in core’s performance counter

• Counted by Arm Cache Coherent Interconnect (Arm-CCI)
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Theories in Exponent Blinding:

Add a random number 𝑟 to 𝑑 for every decryption

C: ciphertext; P: plaintext; d: private key; N: modulus; r: random number (changes for every decryption) 

𝑃 = 𝐶𝑑 𝑚𝑜𝑑 𝑁 𝑃′ = 𝐶𝑑+𝑟 𝑚𝑜𝑑 𝑁

If the 𝑟 is 8 bytes length:

[9] can only leak the 96% value of the blinded key 𝑑′ = 𝑑 + 𝑟, which is randomized and different for every 
trace. Thus, it needs try 𝟑. 𝟐𝟕 × 𝟏𝟎𝟏𝟕 times to get the desired 11 traces(in probability)

(Desired 11 traces means the traces generated by the same random number 𝑟)

Defense the cache side-channel attack well, as most attacks cannot recover the key from a single trace

without
blinding

with
blinding

followed with some un-blinding steps…



52

Exponent Blinding failed when attacker can recover the key from a single trace:

𝑃 = 𝐶𝑑 𝑚𝑜𝑑 𝑁
𝑃′ = 𝐶(𝑑+𝑟) 𝑚𝑜𝑑 𝑁

𝐼 = (𝐶𝑟)−1 𝑚𝑜𝑑 𝑁
𝑃 = 𝑃′𝐼𝑚𝑜𝑑 𝑁 𝑑

If Attacker knows the values of P, N, C, (d + r),
value of d can be calculated out by simply doing some factoring:


