
DEC 5 - 9, 2021 San Francisco, California

Load-Step: A Precise TrustZone Execution Control Framework
for Exploring New Side-channel Attacks Like Flush+Evict

Zili KOU 1, Wenjian HE 1, Wei ZHANG 1, and Sharad Sinha 2

1 Hong Kong University of Science and Technology
2 Indian Institute of Technology Goa

May 15, 2021

2

Security in Computing Systems

• Essential

• Suffers from software vulnerabilities…
• Insecure codes can be exploit, e.g., stack overflow

• Operating system(OS) itself has flaws

• Forever on the way to fix up!

source: cve.mitre.org

3

Trusted Execution Environment (TEE)

• Hardware level isolate
• Enclave or outside

• Commercial products
• Intel SGX

• Arm TrustZone

Source: Intel® Software Guard Extensions Tutorial Series

4

Upgraded protection from TEE
• Strong isolation

• Accessing to secure memory is encrypted, authorized, and attested

• Fail to defend μarch side-channel attackers
• Secrets can still be leaked by (cache) side-channels

• Cache Attacks on Intel SGX [1], Armageddon[2]

• Speculative execution vulnerabilities still exits
• Foreshadow [3]…

• TEE is more privileged than OS
• Protects enclaves against even “malicious OS”
• Kernel (privileged) attacker should be considered!

5

Kernel Attacker on Intel SGX

Source: [4]

High precision hardware timer on intel CPU

SGX-Step [4] Interrupt the enclaves per instruction,

and then detects the μarch side-channel

6

Kernel Attacker on Intel SGX
User-space attack Kernel-privileged attack

Victim User application Trusted application in enclave

Attacker User application Malicious OS

Noise high low

Temporal
resolution

Low, as victim and attacker run simultaneously High, depends on the interrupt frequency

detect detect detect

…
Interrupt,
then detect

…
release

Interrupt,
then detect

release

…

7

Research Gap

• User-space attacker on Arm TrustZone
• Cache side-channel attacks still work on TrustZone [2][7]

• Kernel attacker on Arm TrustZone?
• One nonsystematic work exits [8]

• Newly Arm-specific μarch side-channels?

• Maximum temporal resolution?

8

Arm TrustZone, in hardware

A53 Cluster

A53
Core

Memory Filter

A73 Cluster

DRAM Memory

Other

Components

A53
Core

A53
Core

A73
Core

A73
Core

A73
Core

A53
Core

A73
Core

• Non-secure bit (NS-bit)
• In each core’s register

• In tags of cache lines

• Memory filter
• Isolate the secure memory

9

Arm TrustZone, in software

Normal OS
EL1

Hypervisor
EL2

Secure WorldNormal World

Trust OS
S-EL1

Trust Apps
S-EL0

Secure Monitor
EL3

EL0
Applications

• Exception Level (EL)
• Distinguish privileges

• World switch
• Ensured by concrete protocol

• “smc” instruction
• Communicate between secure

world and normal world.

10

Threat Model

• Some cryptography program is implemented at S-EL0

• Attacker has full privilege of EL1 (Linux kernel)
• Can install an external kernel module

• Assign any core to run a Trusted Application

• Obey the threat model of TrustZone
• No exploit software vulnerabilities

• No privilege at EL3, S-ELs

11

Experiment Platform

Linux 5.5
EL1

EL2

Secure WorldNormal World

OPTEE 3.8.0
S-EL1

MbedTLS 2.26.0
S-EL0

Trusted Firmware-A 2.2
EL3

EL0

In software,

“TrustedFirmware.org”: the reference implementation of TrustZone

In Hardware,

Hikey960 board with Kirin 960 SoC

Arm big.LITTLE architecture,

4 Cortex A53s and 4 Cortex A73s
(533 - 1844 MHz) (903 - 2362 MHz)

12

Load-Step

• A high precision framework to control the execution of TrustZone
• Periodically generate interrupt forward to secure world

• Detect μarch side-channels for every interrupt epochs

• Two challenges
• Framework implementation

• Stable with Low-noise

• Timing source
• High interrupt frequency

13

Load-Step: design

• Designed as an external kernel module
• Exchange some kernel function, e.g., irq_handler()

• Cross-core interrupt instead of self-core interrupt
• TrustZone “occupy” the whole physical core

14

Load-Step: structure

• Two-core framework
• Auxiliary core

• Victim core

15

Timing Source

Time Up

Victim Core

World Switch

Secure Enclave

Start the

Timer

Interrupt Generator

Auxiliary Core

Context

Recovery

Preparation Detection

Interrupt

Handler

Cross-Core

Interrupt

5
1

2

3

4

Load-Step: structure

• Auxiliary core receives a time-up even from “timing source”
• periodically

16

Timing Source

Time Up

Victim Core

World Switch

Secure Enclave

Start the

Timer

Interrupt Generator

Auxiliary Core

Context

Recovery

Preparation Detection

Interrupt

Handler

Cross-Core

Interrupt

5
1

2

3

4

Load-Step: structure

• Generate a cross-core interrupt (IRQ) forwarding to victim core
• Achieved by Arm Generic Interrupt Controller (Arm-GIC)

• This IRQ is an “insecure IRQ” (IRQ from normal world)

17

Timing Source

Time Up

Victim Core

World Switch

Secure Enclave

Start the

Timer

Interrupt Generator

Auxiliary Core

Context

Recovery

Preparation Detection

Interrupt

Handler

Cross-Core

Interrupt

5
1

2

3

4

Load-Step: structure

• “Insecure IRQ” must be handled by normal world!
• World Switch happens

18

Timing Source

Time Up

Victim Core

World Switch

Secure Enclave

Start the

Timer

Interrupt Generator

Auxiliary Core

Context

Recovery

Preparation Detection

Interrupt

Handler

Cross-Core

Interrupt

5
1

2

3

4

Load-Step: structure

• Detection block
• Collect data in μarch

side-channel

19

Timing Source

Time Up

Victim Core

World Switch

Secure Enclave

Start the

Timer

Interrupt Generator

Auxiliary Core

Context

Recovery

Preparation Detection

Interrupt

Handler

Cross-Core

Interrupt

5
1

2

3

4

• Preparation block
• Prepare, pre-train μarch

components, if needed

Load-Step: structure

• Overview
• Timing source is essential

• Frequency determines “temporal resolution”

• Stability determines “precision”

20

Timing Source

Time Up

Victim Core

World Switch

Secure Enclave

Start the

Timer

Interrupt Generator

Auxiliary Core

Context

Recovery

Preparation Detection

Interrupt

Handler

Cross-Core

Interrupt

5
1

2

3

4

Timing source

• Hardware Timers
• Exist in each core

• Generate Hardware IRQ once time up

• Frequency is usually fixed, typically ranges from 1MHz-50MHz

21

Timing source

• Software Timers
• Finite count down loop

• Check “cycle counter” of core

22

Timing source

• Hardware or Software Timers?

23

Reliability Temporal Resolution

Hardware Timer Few jitters 200 ns to 1000 ns (Ours: 500 ns)

Software Timer More software jitters 1 ns in a 1 GHz core

Temporal Resolution
• Benchmark trusted application

• Load data that maps to every cache set, in order

24

Set 512

L2 cache

Set 1

Set 2

Set 3

···
···

1st iteration

Set 512

L2 cache

Set 1

Set 2

Set 3

···
···

2nd iteration

Set 512

L2 cache

Set 1

Set 2

Set 3

···
···

3rd iteration

Set 512

L2 cache

Set 1

Set 2

Set 3

···
···

512th iteration

···

Temporal Resolution
• Prime+Probe reinforced by Load-Step

• Detection block: “Probe” every L2 cache sets

• Preparation block: “Prime” every L2 cache sets

• CPU: 512 sets with 16 way set associative
• Load 16 data per iteration, totally 512 iterations

25

1
Interrupt Epoch (offset)

527

Number of Access

0

16

C
ac

h
e

S
et

IRQ interval: 𝑇𝐻 = 𝟓𝟏(2𝑀𝐻𝑧)−1

Temporal Resolution: ≈ 16 loads

Temporal Resolution

26

• Decrease time parameter? 40? 39?
• Endless loop

• interrupt interval is even less than the time of world switch!

1C
ac

h
e

S
et

26

Number of Access
04 3 2 1

Interrupt Epoch (offset)

IRQ interval: 𝑇𝐻 = 𝟒𝟏(2𝑀𝐻𝑧)−1

Temporal Resolution: ≈ 2 loads

• Hardware Timer

Temporal Resolution

27

• Software Timer
• Variant-A is better than Variant-B

Variant-B with IRQ interval: 𝑇b = 𝟔𝟖𝟎

Temporal Resolution: ≈ 1.6 loads

Variant-A with IRQ interval: 𝑇b = 𝟓𝟏𝟓

Temporal Resolution: ≈ 1.3 loads

Temporal Resolution

28

• Software Timer

Variant-A with IRQ interval: 𝑇b = 𝟓𝟎𝟓

Temporal Resolution: 1 loads per interrupt

Temporal Resolution

29

• Achieve load-instruction precision

• Higher precision?
• Hardware timer: not enough temporal resolution

• Software timer: affect by software jitters

Temporal Resolution: 1 loads per interrupt

Flush+Evict
• Arm-specific instruction: “DC CISW”

• Clear and invalidate cache line by set/way

• Flush cache lines without sharing the victim’s memory space

• Flushed cache lines emit “evict transaction”
• Counted by Arm Cache Coherent Interconnect (Arm-CCI)

30

Flush+Evict

31

L2 cache

Set 1

Set 2

Set 3

Set 512

···
···

Difference:

2 cache lines are refilled

Measured by:

Time of loading

Read PMU of Core

Prime+Probe

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Prime

···

Set 7

Line 1

Line 2

Line 16

···

Flush

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

··· ···

Set 7

Line 1

Line 2

Line 16

Probe

···

Set 7

Line 1

Line 2

Line 16

···

Evict

Flush+Evict
Difference:

2 cache lines are evicted

Measured by:

Read PMU of ARM-CCI

Prime+Probe attack

Flush+Evict

32

L2 cache

Set 1

Set 2

Set 3

Set 512

···
···

Difference:

2 cache lines are refilled

Measured by:

Time of loading

Read PMU of Core

Prime+Probe

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Prime

···

Set 7

Line 1

Line 2

Line 16

···

Flush

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

··· ···

Set 7

Line 1

Line 2

Line 16

Probe

···

Set 7

Line 1

Line 2

Line 16

···

Evict

Flush+Evict
Difference:

2 cache lines are evicted

Measured by:

Read PMU of ARM-CCI

Flush a cache set by
“DC CISW”

Flush+Evict

33

L2 cache

Set 1

Set 2

Set 3

Set 512

···
···

Difference:

2 cache lines are refilled

Measured by:

Time of loading

Read PMU of Core

Prime+Probe

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Prime

···

Set 7

Line 1

Line 2

Line 16

···

Flush

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

··· ···

Set 7

Line 1

Line 2

Line 16

Probe

···

Set 7

Line 1

Line 2

Line 16

···

Evict

Flush+Evict
Difference:

2 cache lines are evicted

Measured by:

Read PMU of ARM-CCI

Victim’s activity leaves
some cache lines here

Flush+Evict

34

L2 cache

Set 1

Set 2

Set 3

Set 512

···
···

Difference:

2 cache lines are refilled

Measured by:

Time of loading

Read PMU of Core

Prime+Probe

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Prime

···

Set 7

Line 1

Line 2

Line 16

···

Flush

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

··· ···

Set 7

Line 1

Line 2

Line 16

Probe

···

Set 7

Line 1

Line 2

Line 16

···

Evict

Flush+Evict
Difference:

2 cache lines are evicted

Measured by:

Read PMU of ARM-CCI

Flush a cache set by
“DC CISW”, again,
And count the “evict
transaction” events

Flush+Evict

35

Interrupt times/ × 1000
22 32 43

E
la

p
se

d
 t

im
e

10s

20s

30s

40s

50s

60s

70s

80s

5112

Prime+Probe

Flush+Evict

Flush+Evict

Prime+Probe

Faster profiling speed Lower profiling noise

Attack RSA in MbedTLS

• RSA sliding window algorithm suffers from cache side-channel
attacks [8][9]

36

Attack RSA in MbedTLS

• “Exponent Blinding” (k=64bit) is imported into MbedTLS
• K bits of exponent is randomized for every decryption

• [9] profiles 11 traces to recover the full key, now need 𝟑. 𝟐𝟕 × 𝟏𝟎𝟏𝟕 traces

• “Exponent Blinding” completely fails if:
• Side-channel attacker can figure out the full by single trace

37

Attack RSA in MbedTLS

• Software configurations
• RSA decryption in MbedTLS 2.22.0

• 4096-bit key size

• window_size = 6

• “exponent blinding” is enabled

38

Attack RSA in MbedTLS

• Load-Step & Flush+Evict

39

1

C
ac

h
e

S
et

Interrupt Epoch
42841960 42300···

···

0

6

Attack RSA in MbedTLS

• Pattern of pre-compute

40

1

C
ac

h
e

S
et

Interrupt Epoch
42841960 42300···

···

0

6

(a)

Attack RSA in MbedTLS

• Pattern of multiply()

41

1

C
ac

h
e

S
et

Interrupt Epoch
42841960 42300···

···

0

6(b)

Attack RSA in MbedTLS

• Pattern of multipliers

42

1

C
ac

h
e

S
et

Interrupt Epoch
42841960 42300···

···

0

6

(c)

• “decode” one multiplier

43

1

C
ac

h
e

S
et

Interrupt Epoch
42841960 42300···

···

0

6

W[52]

11 10 00

Attack RSA in MbedTLS

(a)

(b)

(c)

Attack RSA in MbedTLS

• Decode all multipliers and 0’s window

44

1

C
ac

h
e

S
et

Interrupt Epoch
42841960 42300···

···

(a)

(b)

(c)

W[52]

11 10 00 011 11 11

W[63]

11 01 01

W[57]

11 00 11

W[51]

10 00 00

W[32]

10 10 10

W[38]

11 11 11

W[63]

10 00 11

W[35]

11 10 11

W[55]

11 01 01

W[57]

000 00 00 00 0 00···

Attack RSA in MbedTLS
• performance

45

Conclusion

• Load-Step: a precise Arm TrustZone execution control framework

• Flush+Evict: a new Arm-specific cache side-channel attack

• Insights into μarch attacks on Arm TrustZone

46

Thank you~

Reported by Zili KOU (zkou@connect.ust.hk)

[1]J. Götzfried et all., Cache Attacks on Intel SGX. In Proceedings of the EuroSec'17. Association for Computing Machinery, New York, NY, USA, Article 2, 1–6.
[2] M. Lipp et al., Armageddon: Cache Attacks on Mobile Devices, in Proc. of USENIX Security, 2016.
[3] J. Bulck, et al., Foreshadow: Extracting the keys to the intel SGX kingdom with transient out-of-order execution, in USENIX Security 18, 2018, pp. 991–1008.
[4] J. Bulck, er al., SGX-Step: A Practical Attack Framework for Precise Enclave Execution Control. In Proceedings of SysTEX'17, Article 4, 1–6.
[5] A. Moghimi et al., “Cachezoom: How SGX Amplifies the Power of Cache Attacks,” in Proc. of CHES, 2017.
[6] D. Moghimi, et al., CopyCat: Controlled Instruction-Level Attacks on Enclaves. USENIX Security 20.
[7] N. Zhang et al., “TruSpy: Cache Side-channel Information Leakage from the Secure World on Arm Devices.” Trans. on IACR Cryptol, 2016.
[8] F. Liu, et al., "Last-Level Cache Side-Channel Attacks are Practical," 2015 IEEE Symposium on Security and Privacy, 2015, pp. 605-622
[9] M. Schwarz et al., “Malware Guard Extension: Using SGX to Conceal Cache Attacks,” in Proc. of DIMVA, 2017.

47

Source: [5]

Kernel Attacker on Intel SGX

For every interrupt epoch, detect the μarch side-channels…

Cache (by CacheZoom) Page tables (by COPYCAT)

Source: [6]

48

Flush-based cache side-channel attack

• Flush+Reload and Flush+Flush
• No need to “fill” a cache set: faster and more precise than Prime+Probe

• Require shared memory space with victim (need to flush by address)

49

Impossible! TEE isolates memory between attacker and victim!

Flush+Evict
• No timing difference, but emit a “evict transaction”

• Count the event of “evict transaction”
• No such event in core’s performance counter

• Counted by Arm Cache Coherent Interconnect (Arm-CCI)

50

Arm Generic Interrupt Controller

Arm Cache Coherent Interconnect

L2 Cache

A73

Core

A73

Core

A73

Core

A73

Core IO

Coherent

Master

L2 Cache

A53

Core

A53

Core

A53

Core

A53

Core

51

Theories in Exponent Blinding:

Add a random number 𝑟 to 𝑑 for every decryption

C: ciphertext; P: plaintext; d: private key; N: modulus; r: random number (changes for every decryption)

𝑃 = 𝐶𝑑 𝑚𝑜𝑑 𝑁 𝑃′ = 𝐶𝑑+𝑟 𝑚𝑜𝑑 𝑁

If the 𝑟 is 8 bytes length:

[9] can only leak the 96% value of the blinded key 𝑑′ = 𝑑 + 𝑟, which is randomized and different for every
trace. Thus, it needs try 𝟑. 𝟐𝟕 × 𝟏𝟎𝟏𝟕 times to get the desired 11 traces(in probability)

(Desired 11 traces means the traces generated by the same random number 𝑟)

Defense the cache side-channel attack well, as most attacks cannot recover the key from a single trace

without
blinding

with
blinding

followed with some un-blinding steps…

52

Exponent Blinding failed when attacker can recover the key from a single trace:

𝑃 = 𝐶𝑑 𝑚𝑜𝑑 𝑁
𝑃′ = 𝐶(𝑑+𝑟) 𝑚𝑜𝑑 𝑁

𝐼 = (𝐶𝑟)−1 𝑚𝑜𝑑 𝑁
𝑃 = 𝑃′𝐼𝑚𝑜𝑑 𝑁 𝑑

If Attacker knows the values of P, N, C, (d + r),
value of d can be calculated out by simply doing some factoring:

