Cache Side-channel Attacks and Defenses
of the Sliding Window Algorithm in TEEs

Zili KOU
Hong Kong University of
Science and Technology
zkou@connect.ust.hk

Sharad Sinha
Indian Institute of
Technology Goa
sharad @iitgoa.ac.in

Abstract—Trusted execution environments (TEEs) such as
SGX on x86 and TrustZone on ARM are announced to protect
trusted programs against even a malicious operation system (OS),
however, they are still vulnerable to cache side-channel attacks.
In the new threat model of TEEs, kernel-privileged attackers are
more capable, thus the effectiveness of previous defenses needs to
be carefully reevaluated. Aimed at the sliding window algorithm
of RSA, this work analyzes the latest defenses from the TEE
attacker’s point of view and pinpoints their attack surfaces and
vulnerabilities. The mainstream cryptography libraries are scru-
tinized, within which we attack and evaluate the implementations
of Libgcrypt and Mbed TLS on a real-world ARM processor with
TrustZone. Our attack successfully recovers the key of RSA in
the latest Mbed TLS design when it adopts a small window size,
despite Mbed TLS taking a significant role in the ecosystem
of ARM TrustZone. The possible countermeasures are finally
presented together with the corresponding costs.

Index Terms—cache side channel, RSA, TrustZone

I. INTRODUCTION

RSA [1] decryption is a widely used public-key cryp-
tosystem for secure applications, though, its software im-
plementations continue to be revealed vulnerable to cache
side-channel attacks. We first demonstrate how previous side-
channel attackers leak private keys of RSA decryption. Then,
the motivation for this work is presented followed by our
contributions.

A. Previous Works

The sliding window algorithm is usually adopted to compute
modular exponentiation in RSA. It implements a window
scanning from the most significant to the least significant
bits. Whenever the conditions are met, the algorithm accesses
different multipliers to conduct modular multiplications “based
on the value of the current window”, which forms secret-
dependent memory accesses that can be exploited by cache
side-channel attackers. In the user space, cache side-channel
attackers [2]-[4] monitor the behaviors of cache hierarchies,
locate the target cache sets occupied by multipliers, and re-
peatedly conduct cache side-channel measurements. A precise
profile of the access pattern of multipliers can be recovered
into the private key based on attacker’s knowledge. However,
in practical it is unavoidable to detect some noise so profiling
multiple traces are usually needed and partial key recovery [5],
[6] is also introduced to help eliminate misalignments, bit-
reverses, etc. In the kernel space, TEE attackers often utilize
their high privileges to interrupt victim programs and con-
duct cache side-channel attacks with much higher precision.

Hong Kong University of
Science and Technology

Wei ZHANG
Hong Kong University of
Science and Technology
wei.zhang @ust.hk

Wenjian HE

wheac @connect.ust.hk

E.g., SGX-Step [7] achieves instruction-level precision when
interrupting a program in SGX, CacheZoom [8] shows how
SGX amplifies the power of cache attacks, and Load-Step [9]
and Ryan’s work [10] interrupt TrustZone programs and
demonstrate high precision cache side-channel attacks.

B. Motivation and Research Gap

The new threat model of TEEs brings extra challenges
to defending against cache side-channel attacks so existing
defenses, which are designed without enough TEE-specific
security concerns, may still be thoughtless and flawed. In
the case of the sliding window algorithm, cache side-channel
vulnerabilities revealed by academia and industry are usually
fixed up by case-by-case study [11]. To protect the sliding win-
dow algorithm in the TEE scenario, a rigorous defense scheme
that takes the software origin of vulnerabilities and the capabil-
ities of TEE attackers into account are desired, without which
software designers will be less confident to promise their
implementations are secure against kernel-privileged attackers.
Defenses against user space cache side-channel attacks [2]—[4]
are already deployed by the mainstream cryptography libraries.
Schwarz et al. [12] conducts cache side-channel attacks inside
the SGX enclave to leak keys of RSA in the rich world,
and Load-Step [9] presents the single trace attack on RSA in
the TrustZone scenario, however, they work mainly from the
attacker’s aspect without diving into the design of defenses
and they are defended by latest cryptography libraries, too.

This work systematically scrutinizes the sliding window
algorithms in the mainstream cryptography libraries and eval-
uates the effectiveness of their defenses in TEEs. Based on our
analysis, we pinpoint the vulnerability in the latest Mbed TLS
library and soon verify it by cache side-channel attacks,
despite Mbed TLS being one of the cryptography providers of
TrustZone. Summarized, we make the following contributions:

e Scrutinize the latest cryptography libraries to evaluate
the sliding window algorithm from the kernel-privileged
attacker’s point of view

o Support our statements by real-world cache side-channel
attacks against RSA decryption on an ARM processor
with the reference implementation of TrustZone

e Reveal that the RSA implementation in the latest
Mbed TLS library is still vulnerable, and demonstrate
a comprehensive attack methodology to recover the keys

¢ Propose software mitigation against our attacks and
present a preliminary analysis of the penalty

C. Experiment Platform

Attacks in this paper are conducted on a real-world board
named Hikey 960 equipped with the Hisilicon Kirin 960
system-on-chip (SoC). It involves 4 AS53 cores (16-way set-
associative L2 cache with 512 sets) and 4 A73 cores based
on ARM big.LITTLE architecture and the cache side-channel
measurements are implemented on the L2 cache of an A53
core. In terms of software, Hikey 960 is currently supported
by the reference implementation of TrustZone by Trusted-
Firmware [13], i.e., TF-A + OPTEE + Mbed TLS, which is
also why we choose Hikey 960 for evaluation. In the rich
world, the buildroot OS with Linux kernel 5.5 is implemented.

D. Threat Model and Assumptions

We adopt a common threat model for kernel-privileged
attackers and totally obey the assumptions made by TrustZone.
We assume the RSA decryption is implemented as a trusted
service in the secure world of TrustZone, and the attacker
invokes attacks and measurements by a malicious kernel driver.
For the victim RSA program, we assume the RSA-2048
is implemented with the public exponent e set to 65537,
and the CRT mode is applied. In the cache side-channel
attacks, we reproduce interrupt-based attacks such as [9], [10],
though, we do not focus on the precision of interrupts, but
rather on reliable analysis of the victim program. We denote
an interrupt round as anytime when the attacker invokes
an interrupt forwarding to the victim, stalling the execution
of the trusted application and making some measurements
and observations. During every interrupt round, Prime+Probe
attack is conducted to detect the whole L2 cache of the A53
core.

II. PRELIMINARIES
A. Cache Side Channel Attacks in TEEs

1) Prime+Probe: Prime+Probe [2] is the most common
technique for eviction-based cache side-channel attacks. Be-
fore attacking, the attacker first constructs an eviction set, i.e,
a group of addresses that are mapped to the same cache set.
Three steps are involved in every measurement: prime, wait,
and probe. In the prime step, the attacker loads the eviction
set to fully occupy a cache set. During the wait procedure, if
the victim loads data that is mapped to the same cache set,
data cached by the attacker will be evicted. A longer reloading
time of the eviction set can be detected in the probe procedure,
indicating that the cache set has been previously accessed by
the victim.

2) Interrupt-based attacks: TEE attackers usually utilize
the interrupt mechanism of the OS to significantly improve
the performance of attacks, and they seek to increase the
interrupt frequency as it determines the precision of side-
channel measurements [7], [9]. In the interrupt-based attacks
using Prime+Probe, attackers periodically invoke interrupts
to trusted programs and then conduct side-channel measure-
ments (prime). Before releasing the interrupt threads, the
side-channel contents are prepared well (probe) for the next
interrupt round.

Algorithm 1: Sliding Window Algorithm

Input: base b, modulus m, exponent d = {dn...d1 },
Output: b? (mod m)

precompute multipliers M[2¥ 1] to M[2¥ — 1].
r—1li1+n
while ¢ > w — 1 do

if d; = 0 then

r < 72 (mod m)
i1 —1

/I modular square r

else
repeat w times

| 7+ 72 (mod m)
end
j < {di...di_w+1}2
7 7 X M[j] (mod m)
P41 —w

/l modular square T

/I modular multiply v by M |j]

end
end
while ¢ > 0 do
r < 72 (mod m)
P43 —1
if d; = 1 then
| 7+« 7 x M[1] (mod m)
end

/I process remaining bits

end
return r

B. RSA Cryptosystem

1) Arithmetic Principle: RSA cryptosystem starts by gen-
erating two random primes p,q and offering (e, N) as the
public key, where N = pqg and e is a (usually fixed)
public exponent. For a given e, the RSA program computes
d = e (mod (p— 1)(q — 1)) to form the private key
(d,p,q). One can encrypt the plaintext m into the ciphertext
s by computing s = m® (mod N) and decrypt by computing
m = s (mod N). In real-world applications, (N,d,p,q) are
very large numbers so factorizing N without any information
about (d,p,q) is computationally infeasible. To speed up
the heavy computation, an optimization based on Chinese
Remainder Theorem (CRT) is always deployed, which splits
the original modular exponentiation into two operations with
smaller operands: m, = s% (mod p) and m, = s% (mod q),
where d, = d~! (mod (p—1)) and d, = d~! (mod (q —1)).
The plaintext m can be finally reconstructed with the input
(p, @, mp,myg).

2) Sliding Window Algorithm: As shown in Algorithm 1,
the general implementation of the sliding window algorithm
obeys the Montgomery reduction [14] to ease the computing
of modular exponentiation, i.e., inputs base b, exponent d, and
modulus m and outputs b% (mod m). A window of size w
is implemented to scan the bits of the exponent. To optimize
the modular multiplication, the multipliers are precomputed as
M]2% —1]. The algorithm starts with an intermediate result r
and conducts two operations based on the values of the current
window: modular square r (for times) or modular multiply
r by one of the multipliers M[i]. As a consequence, cache
side-channel attackers can observe the memory access pattern
to figure out when and which multiplier has been loaded by
the victim and finally recover the exponent bits based on the
attackers’ knowledge of the algorithm.

C. Partial Key Recovery

The partial key recovery takes effect when only part of the
key bits are known, and the correct key is recovered based on
the potential arithmetic principles of cryptosystems. A survey
of techniques for the partial key recovery is made in [5],
within which we utilize Branch-and-Prune [15] to enable our
attacks. Branch-and-Prune works when d,, and d, are partially
known in RSA with CRT optimization, and this technique is
generalized in cache side-channel attacks by [16], [17].

1) Branch-and-Prune: For CRT exponents d, and dg, it
holds ed, = k,(p — 1) + 1 and ed;, = kq(¢ — 1) + 1 for
some 1 < Ky, kg < e. Multiplying them together, we obtain
an important equation that helps verify the correctness of d,,
and dg:

(edy — 1+ kp)(edy — 1 + kg) = kpkyN (1)

reducing Equation 1 modulo e, we get (k, — 1)(kg — 1) =
kpkqN (mod e). In the most common case (so as the scruti-
nized cryptography libraries), e is set to 65537. Hence, there
is at most 65536 pairs of k, and k, and it is computationally
feasible to brute force them, as the verification with an incor-
rect pair will end earlier. Branch-and-Prune starts recovering
d, and d, from the lease significant bit. At a specific location,
if a bit of d, and d, is unknown, the algorithm branches to
create two threads, assuming the bit is ‘0’ or ‘1’. Whenever
d, and d, in a thread do not conform to Equation 1 at the ;"
bit, i.e., (edp —1+ky)(ed; — 1+ k) # kpkyN (mod 2°), the
algorithm prunes such a thread. Given correct k;,, and k,, the
verification will finally generate fully recovered d,, and d,, after
iterating for every bit. Branch-and-Prune is, unsurprisingly,
not omnipotent as the running time grows exponentially in
the number of unknown bits. Heuristically, it fails when the
known bits of d,, and d, are fewer than 50% [16].

III. DEFEND SLIDING WINDOW ALGORITHMS

In this section, we first show how the traditional sliding win-
dow algorithm is broken down by cache side-channel attackers.
After scrutinizing the mainstream libraries, we summarize the
existing defenses and classify them into three types, i.e., ex-
ponent blinding, multiplier obfuscation, and square&multiply
obfuscation, as shown in Table I. Each type of defense is
explained followed by how it is disqualified (if possible).

TABLE I
THREE TYPES OF DEFENSES IN CRYPTOGRAPHY LIBRARIES.

Cryptography Exponent Multiplier = Square&Multiply
Library Blinding Obfuscation Obfuscation
Libgerypt 1.10.1 v v v
OpenSSL 3.1.0 v
WolfSSL 5.3.0*
Mbed TLS 2.26.0 v
Mbed TLS 3.1.0 v v

*designed to be lightweight and portable.

True bits:00 101001 0 101011 11010100000101110 000101000
Recovered bits:00 101001 0 101011 11010100000101110 000101000

M[32] 212
Access
3
M[40] I T T S U S—
| —
M[43]
P
M[46 o
M[4a7] @]]
8
M[53]
C—®
MI[60]....
M[63] 512 0
12096 12896

Interrupt round
Fig. 1. Our attack against the sliding window algorithm in Mbed TLS 2.26.0.

A. Attack Naive Implementations

Naive implementations of the sliding window algorithm ex-
pose secret-dependent memory accesses to cache side-channel
attackers, i.e., loading different multipliers based on the bits
value of the current window. In the user space, attackers need
to observe the behaviors of the cache hierarchy to figure
out the cache sets that store the multipliers. In the profile
stage, attackers keep conducting cache side-channel attacks
to profile the access pattern of the specific cache sets. Based
on attackers’ knowledge, each access of a multiplier can be
decoded into a portion of key bits, and the full recovery of
the exponent is finally obtained. Usually, attackers invoke the
RSA decryption and profile it multiple times to overcome the
noise and misalignment. E.g., Liu et al. [2] need 10-15 traces
for each multiplier, and Schwarz et al. [12] fully recover the
exponent with 11 traces.

B. Exponent Blinding

As multiple traces are needed for the full recovery of
exponent bits, one solution is to randomize the exponent
for every modular exponentiation. Exponent blinding repre-
sents a blinding strategy that calculates a random number
and adds it with the original exponent, while keeping the
arithmetic result unchanged. In detail, the two operations
in RSA CRT mode, s% (mod p) and s% (mod g¢), now
becomes s%T7(P=1) (mod p) and s% (@1 (mod ¢), and
r, with the length of m bits, is randomly generated for every
invoking of the RSA decryption. The results are unchanged
as =Y = 1 (mod p) if p is prime and = # 0 (mod p)
(Fermat—Euler theorem). With the exponent blinding applied,
cache side-channel attackers that require n traces are expected
to profile 2("™~™/") times to create n collisions, which is
computationally infeasible. E.g., Liu et al. [2] that need 10
traces now requires more than 22°2 observations if adopts 28
bytes blinding.

Disqualified: However, the exponent blinding is completely
breached if attackers need not profile multiple traces, instead,
they can fully recover the blinded exponent by a single
trace. Unfortunately, such single trace attacks are feasible
for interrupt-based attackers [9], [18]. We conduct a single
trace cache side-channel attack against the sliding window

True bitS:110111 00 100011 O 110000 OO 111110
Recovered bits:1XXXXX 00 1XXXXX O IXXXXX__00 IXXXXX

106 = - —Access
V) P e S — R — - s

g

[0}

<

Q

©

(@]
M[63] 306 0

22007 — 23000

Interrupt round

Fig. 2. Our attack against the sliding window algorithm in Mbed TLS 3.1.0.

algorithm in Mbed TLS 2.26.0 and generate the profile shown
in Fig. 1. The block patterns are the memory accesses of
the multipliers and they are clear enough to be recovered
into exponent bits: 1) From which cache set a multiplier
is mapped to we know the index j of the multipliers. 2)
Decode each multiplier M ;] into exponent value j in binary.
3) Fill in ‘0’ bits between multipliers. The higher the interrupt
frequency in our attack, the less noise and misalignment but
also the longer execution time there would be. Again, we focus
more on the feasibility rather than the ultimate performance.
Specifically, the demonstrated attack in Fig. 1 achieves the full
recovery from a single trace by 19228 interrupt rounds, and it
takes 16.5 seconds for cache side-channel measurements and 3
seconds for the pattern recognition. The recovered exponents
dp+7r(p—1) and dg+r(¢—1) are modular equivalent to d,, and
d, and can be directly used for the following decryption. To
completely leak the private keys, one of the methods is to find
the common prime factors between several e(d,+7;(p—1))—1,
from which we know the value of p — 1 so that successfully
factorize N.

C. Multiplier Obfuscation

Loading different multipliers based on the exponent bits
is the main secret-dependent memory access in the sliding
window algorithm. Therefore, concealing or obfuscating the
access patterns of the multipliers can significantly trouble
cache side-channel attackers. A straightforward idea is to make
the access patterns the same no matter which multiplier is
loaded. Until now, two approaches are presented: scatter-gather
in OpenSSL and traverse-select in Libgcrypt and Mbed TLS.
The scatter-gather implementation tries to avoid the memory
accesses of the multipliers at coarser than cache line granular-
ity, i.e., instead of being stored as consecutive bytes, each
multiplier is scattered and distributed across several cache
lines. As a consequence, loading every multiplier will access
the same group of cache lines so that cache side-channel
attackers cannot distinguish the multipliers by monitoring
cache sets. The traverse-select implementation allocates a new
memory area to store the multiplication operand. Whenever
a multiplier M[j] is needed, all the multipliers are loaded
in order, though, only the j** loading round writes back to

True bits: 100000 101010 00 111011

105 S5 SMSSSSSSMSSSSSSSS Maccess
4

Cache set

270 0
1172 Interrupt round 1647

Fig. 3. Our attack against the sliding window algorithm in Libgcrypt 1.10.1,
where the ‘S’ denotes the square and the ‘M’ denotes the multiplication.

the allocated memory area. We conduct the same single trace
cache side-channel attack against the sliding window algorithm
in Mbed TLS 3.1.0, as shown in Fig. 2, the area circled in
green depicts the memory access patterns of the multipliers
with traverse-select applied.

Disqualified: The multiplier obfuscation successfully con-
ceals which multiplier is accessed, however, it does not conceal
when the multiplier is accessed, which is another secret-
dependent memory access that is usually ignored by program-
mers. Based on attackers’ knowledge of the sliding window
algorithm, a multiplier is loaded when the value of the current
window matches from 2%~ to 2% —1, i.e., it always starts with
a bit ‘1°. Besides, between two multiplication operations, each
bit ‘0’ requires a square operation. Therefore, there are still
some bits that cache side-channel attackers are able to leak,
and the percentage of known bits is determined by the window
size w. Fig. 2 depicts the partially recovered exponent bits
even though the multiplier obfuscation is applied. Statistical
experiments show that around 50% bits of modular exponen-
tiation are leaked if w = 3, which satisfies the prerequisite of
the Branch-and-Prune technique. To summarize, the multiplier
obfuscation is still vulnerable when w < 4.

D. Square&Multiply Obfuscation

The square&multiply obfuscation aims to strictly remove
the secret-dependent memory access of the multipliers, i.e.,
conceal both which and when the multiplier is accessed. As
the multiplication operand is the output number itself in the
square operation, programmers achieve the square&multiply
obfuscation by adding the output number into the loading
sequence of traverse-select. Hence, the square and multipli-
cation are treated the same, i.e., the algorithm loads all the
multipliers and the output number in order but only writes
back the needed one. Our interrupt-based cache side-channel
attack against the sliding window algorithm in Libgcrypt
1.10.1 is shown in Fig. 3 that the access patterns of traverse-
select appear uniformly. With the square&multiply obfuscation
applied, cache side-channel attackers even cannot leak when
the multiplier is loaded therefore no bit is recovered from the
profile.

Precomputation ofd,

True bits: 110 101 0 110 00000 101 100 101 101 100 100 00 101 00 111
Recovered bits: 1XX 1XX 0 1XX 00000 1XX 1XX 1XX 1XX 1XX 1XX 00 1XX 00 1xx ACCESS

I W e e e P
650

True bits: 110 000 110 0000 101 101 0 100 100 000 100

Recovered bits: 1XX 000 1XX 0000 1XX 1XX 0 1XX 1XX 000 1XX

6490 0

: : i | l:l:—l !
- 150 T & el '] Wl = T
Q 0
g Precomputation of dg
® g0 T S
(@) o L ULl l Lo U B EEREE 1] (FA [T o
il Y i
150%#-"~ " A ' I <
5940 Interrupt round

Fig. 4. Our practical attack against the 2048-bit RSA implemented by Mbed TLS 3.1.0.

Secure World in TrustZone
Periodically °-T|mer
@ Interrupt

(2 Cache Side-channel]

World Switch Measurements

RSA Decryption

Single Trace Profilel

. Partial K| Bit .
o Partial Key Recovery we Parse Profile Data

Fig. 5. Our comprehensive attack methodology.

Drawback: The secret-dependent memory accesses are
removed as much as possible by the square&multiply obfusca-
tion, however, this inevitably results in a huge loss of perfor-
mance. In the sliding window algorithm, the square operations
are much more than the multiplication operations. To deal
with a 2048-bit exponent, there are 2048 square operations
and fewer than 2048/w multiplication operations. Obviously,
the performance of the sliding window algorithm suffers a lot
if the traverse-select implementation is not only triggered for
the multiplication but also for the square operation.

IV. ATTACK LATEST MBED TLS

In this section, we utilize our analysis to point out that
the sliding window algorithm in the latest Mbed TLS is still
vulnerable to kernel-privileged attackers. We first demonstrate
a comprehensive attack methodology and then present the
experiment results.

A. Attack Methodology

The workflow of our attack is shown in Fig. 5 that there are
totally 4 steps. @) The RSA decryption is triggered to operate
in the TEE enclave and the kernel-privileged attacker periodi-
cally invokes an interrupt to temporarily stall the execution of
the victim program. @) During every interrupt round, cache
side-channel measurements (Prime+Probe) are conducted for
all the L2 cache sets. €) The RSA decryption is done, and so
is the interrupt-based attack. The raw profile data is parsed by
our python scripts, resulting in two partial known key bits of d,,
and d,. @ We implement Branch-and-Prune in C and utilize
it to fully recover the private keys. The recovery program will
end prematurely if it runs for too long.

B. Results

We conduct such attacks against the RSA decryption in the
latest Mbed TLS library, i.e., version 3.1.0, which is equipped

TABLE 11
EXPERIMENT RESULTS.

Window Interrupt Partial Execution
Size Round Known Bits Time
w=>5 10564 34.6% 105s+3s+>48h
w=4 11869 40.5% 11.7s+3 s+ >48 h
w=3 12967 50.8% 126 s +3s+06s
w=2 13294 66.8% 130s+3s+0.03s
w=1 16630 100% 152s+3s+0s

with the exponent blinding and the multiplier obfuscation. In
the case of w = 3, we interrupt the RSA decryption for 12534
rounds and plot the profile as Fig. 4. The sliding window
algorithm is executed twice due to the CRT optimization.
Therefore, our parsing program first needs to locate the
modular exponentiation of d, and d, separately, which is
not difficult as the sliding window algorithm precomputes the
multipliers and leaves unique memory access patterns. The
identification of the multipliers is simple, as the patterns of
the multipliers are visually recognizable and the profile is
noiseless and free from misalignment. The red symbols in
Fig. 4 depict how we partially recover the exponent bits:
label ‘1XX’ at the location of every multiplier, and fill in
‘0’s between two multipliers. Finally, the partial known bits
exponent are passed to the Branch-and-Prune program, and we
verify the recovered exponents with the true d,, and d,.

When attacking the sliding window algorithm with different
window sizes, we always keep the interrupt frequency un-
changed. The detailed experiment results averaged by 1000
iterations are listed in Table II, including the interrupt round,
the partial known bits, and the execution time (cache attacks
+ profile parsing + partial key recovery). Our attacks suc-
cessfully recover the private keys by a single trace when
w < 4, and the attack and the recovery procedures can finish in
seconds. When w > 4, the partial known bits recovered from
the attacks are too few to satisfy the prerequisite of Branch-
and-Prune so the recovery program fails to complete and ends
early after 2 days.

V. MITIGATION

This section discusses the possible mitigation for our at-
tacks and the corresponding penalty. We first analyze the
feasibility and the impact of limiting the window size. Then
we implement square&multiply obfuscation into the latest

5 X 107 7. With Defense
- Original —
4 7 — 7 7 :
)
g 3
L
(]
£ ?
'_
1
A 2 3 4 5

Window Size

Fig. 6. The Execution time of the sliding window algorithm of Mbed TLS
3.1.0, with or without the square&multiply obfuscation applied.

Mbed TLS design and evaluate the performance loss on our
tested platform.

A. Limit Window Size

As the window size determines the number of partial known
bits so that limits the success of Branch-and-Prune, one
intuitive countermeasure is to avoid using a small window
size. However, the window size is not a parameter that can be
changed at will. On one hand, there exist some conventions
of the window size, e.g., in Libgcrypt, RSA-1024 uses w = 4
and RSA-512 uses w = 3. On the other hand, a large window
size burdens the memory and the cache hierarchy, i.e., 32
multipliers (when w = 6) need to be allocated to around 136
KB continuous memory and occupy 272 cache sets, which
may be unacceptable for lightweight embedded systems. Until
now, we have not discovered any notice about setting the
window size for security purposes in the latest cryptography
libraries. For Mbed TLS, as the important component in the
ecosystem of TrustZone that may be adopted by a diverse
range of devices, we recommend adding optional limitations
rather than strictly forcing w > 4.

B. Import Square&Multiply Obfuscation

Another countermeasure is to import the square&multiply
obfuscation into Mbed TLS, and the performance cost be-
comes the main concern. We only make simple modifications
for a preliminary evaluation of the performance, i.e., adding
the output number into the loading sequence of traverse-select
and invoking traverse-select for every square and multiplica-
tion. In addition, the set-up of the evaluation platform may
not be general and convincing, as the cache hierarchy impacts
performance a lot. For a more rigorous evaluation, we leave
it to future works. We implement the sliding window algo-
rithm of Mbed TLS, with and without the square&multiply
obfuscation, to compute the 2048-bit modular exponentiation
and assign it to operate on an AS53 core. The execution
time averaged by 1000 iterations is shown in Fig. 6 that
the performance degrades for all cases. The possible reason
accounting for the huge performance loss when using a large
window size suchlike w = 5 is that a larger window size
generates more multipliers to be sequentially loaded during
traverse-select. Interestingly, the selection of a larger window
size, which is previously an optimization, now suffers from the

square&multiply obfuscation defense. Therefore, we believe
careful analysis of the trade-offs is needed when importing
the square&multiply obfuscation.

VI. CONCLUSION

In this paper, we discuss the capabilities of kernel-privileged
attackers against the sliding window algorithm. A systematic
analysis of the latest defenses adopted by the mainstream
cryptography libraries is summarized, based on which we
pinpoint the vulnerability of the sliding window algorithm
implemented by the latest Mbed TLS. Our comprehensive
attack methodology and the analysis of the mitigation offer
practical inspiration to both attackers and defenders.

DISCLOSURE

The vulnerability is assigned CVE-2021-46392 as the public
identifier. Mbed TLS confirmed and patched the vulnerability
well. We appreciate Mbed TLS’s helpful feedback and profes-
sional handling of our report.

REFERENCES

[1] R.L.Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120-126, 1978.

[2] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in 2015 IEEE symposium on security
and privacy. 1EEE, 2015, pp. 605-622.

[31 Y. Yarom and K. Falkner, “FLUSH+ RELOAD: A high resolution,
low noise, 13 cache side-channel attack,” in 23rd USENIX security
symposium (USENIX security 14), 2014, pp. 719-732.

[4] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,
“Seriously, get off my cloud! cross-vm rsa key recovery in a public
cloud,” Cryptology ePrint Archive, 2015.

[5] G. De Micheli and N. Heninger, “Recovering cryptographic keys from
partial information, by example,” Cryptology ePrint Archive, 2020.

[6] K. G. Paterson, A. Polychroniadou, and D. L. Sibborn, “A coding-
theoretic approach to recovering noisy rsa keys,” in ASIACRYPT.
Springer, 2012, pp. 386—403.

[71 J. Van Bulck, F. Piessens, and R. Strackx, “Sgx-step: A practical attack
framework for precise enclave execution control,” in SysTEX, 2017.

[8] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How sgx
amplifies the power of cache attacks,” in CHES, 2017.

[9] Z. Kou, W. He, S. Sinha, and W. Zhang, “Load-step: A precise trustzone
execution control framework for exploring new side-channel attacks like
flush+ evict,” in 2021 58th ACM/IEEE DAC. 1EEE, 2021, pp. 979-984.

[10] K. Ryan, “Hardware-backed heist: Extracting ecdsa keys from qual-
comm’s trustzone,” in Proceedings of the 2019 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2019, pp. 181-194.

[11] “MbedTLS security disclosures.” [Online]. Available:
https://tls.mbed.org/security

[12] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard, “Mal-
ware guard extension: Using sgx to conceal cache attacks,” in DIMVA.
Springer, 2017, pp. 3-24.

[13] “Trusted firmware.”
https://www.trustedfirmware.org/

[14] P. L. Montgomery, “Modular multiplication without trial division,”
Mathematics of computation, vol. 44, no. 170, pp. 519-521, 1985.

[15] N. Heninger and H. Shacham, “Reconstructing rsa private keys from
random key bits,” in Annual International Cryptology Conference.
Springer, 2009, pp. 1-17.

[16] D. J. Bernstein, J. Breitner, D. Genkin, L. Groot Bruinderink,
N. Heninger, T. Lange, C. v. Vredendaal, and Y. Yarom, “Sliding right
into disaster: Left-to-right sliding windows leak,” in CHES, 2017.

[17] Y. Yarom, D. Genkin, and N. Heninger, “Cachebleed: a timing attack
on openssl constant-time rsa,” Journal of Cryptographic Engineering,
vol. 7, no. 2, pp. 99-112, 2017.

[18] A.C. Aldaya and B. B. Brumley, “When one vulnerable primitive turns
viral: Novel single-trace attacks on ecdsa and rsa,” Cryptology ePrint
Archive, 2020.

[Online]. Available:

