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Abstract—Eviction-based cache side-channel attacks take advantage

of inclusive cache hierarchies and shared cache hardware. Processors
with the template ARM big.LITTLE architecture do not guarantee such
preconditions and therefore will not usually allow cross-core attacks
let alone cross-cluster attacks. This work reveals a new side-channel
based on the snoop filter (SF), an unexplored directory structure
embedded in template ARM big.LITTLE processors. Our systematic
reverse engineering unveils the undocumented structure and property
of the SF, and we successfully utilize it to bootstrap cross-core and cross-
cluster cache eviction. We demonstrate a comprehensive methodology to
exploit the SF side-channel, including the construction of eviction sets,
the covert channel, and attacks against RSA and AES. When attacking
TrustZone, we conduct an interrupt-based side-channel attack to extract
the key of RSA by a single profiling trace, despite the strict cache clean
defense. Supported by detailed experiments, the SF side-channel not only
achieves competitive performance but also overcomes the main challenge
of cache side-channel attacks on ARM big.LITTLE processors.

Index Terms—directory, side-channel attacks, ARM processors

I. INTRODUCTION

Cache side-channel attacks represent approaches of exploiting the
timing difference between cache hits and cache misses. Researchers
have proposed various applications to exploit the cache side-channel,
e.g., covert channel communications [1], [2], extracting cryptographic
keys [2], [3], and speculative execution attacks [4], [5].

A. Background and Previous Works

Coherence-based cache side-channel attacks [6], [7] exploit the
cache coherence protocol between cores. They need to load the same
data owned by victims, so the virtual memory space must be shared.
Flush-based attacks [8], [9] further need the privilege of cache-
cleaning instructions to clear victims’ cache lines. Unlike coherence-
based and flush-based attacks, eviction-based attacks [2], [10] do
not require shared memory or any special instructions. Instead, such
attacks construct cache eviction sets to occupy target cache sets.

Flush-based attacks can be avoided using one of two methods.
One is to forbid cache-cleaning instructions. Some works suggest
restricting the usage of the clflush instruction on x86 plat-
forms [11], [12]. On ARM platforms, cache-cleaning instructions can
naturally be disabled by configuring the PMUSERENR_EL0 register.
The second method is avoiding shared memory between attackers
and victims, which defends against both flush-based and coherence-
based attacks. This is usually true as user programs are isolated
by the operating system (OS), which is also why previous attacks
appear only in the shared library scenario, or when attackers exploit
memory deduplication [13]. Eviction-based attacks are therefore more
practical, as they do not require the shared virtual memory space with
victims but rely on their own data to evict a cache set.

There are two prerequisites to make eviction-based cache side-
channel attacks feasible. The first is the existence of shared cache
hardware, and the second is that cache hierarchies should be inclusive
otherwise attackers cannot evict the private cache line of remote
victims. To the best of our knowledge, modern commercial x86
processors are usually implemented with a shared last level cache
(LLC) and most adopt an inclusive cache hierarchy. For the increasing
trend of adopting non-inclusive cache hierarchies on today’s x86

TABLE I: EXISTING CACHE SIDE-CHANNEL ATTACKS ON ARM.

Work Single-core Cross-core Cross-cluster
[20] Flush,Evict Evicta,Flush,Coherence Coherence
[21] Evict — —
[22] — Flusha —
[23] Flush — —
[24] Evict — —
[25] Evict — —
[26] Evict — —

This paper Evict Evict Evict
aHowever, limited by [15].

server processors, Yan et al. [14] support our statements that eviction-
based cache side-channel attacks fail to deal with non-inclusive
caches. Instead of caches, attackers turn to attack directories, which
are inclusive between cores.

ARM processors tell a different story. As licensed designers
are free to modify ARM’s intellectual property (IP) blocks, ARM
processors, however, are board-specific and are much more diverse;
therefore, we should never assume that an ARM processor adopts
an inclusive cache hierarchy. In fact, AutoLock [15] demonstrates
that a group of ARM processors “behave non-inclusively” so that
cache side-channel attacks are harder than we think. On the other
hand, the ARM big.LITTLE architecture design [16] integrates big
and little clusters without a shared cache, in which case, the first
precondition is lacking. Despite the big.LITTLE architecture design
being one of the most famous ARM IPs that is widely authorized [17],
[18] and currently on sale [19], there is no systematic analysis of
eviction-based side-channel attacks on ARM big.LITTLE processors.
The capabilities of conventional approaches, the feasibility of cache
eviction between cores and clusters, and the existence of an inclusive
structure remains to be explored.

B. Challenges of Cache Attacks on ARM

While cache side-channel attacks are well studied on x86 plat-
forms, only a few research works exist on ARM platforms. We
define three attack scenarios: the single-core scenario, the cross-core
scenario, and the cross-cluster scenario. The cross-cluster scenario
is the toughest one of the three as it does not conform to the two
prerequisites. A summary of the existing cache side-channel attacks
on ARM platforms is shown in Table I.

Existing works have not systematically discussed cache side-
channel attacks on ARM big.LITTLE processors, so there is no
attack in the cross-cluster scenario except Armageddon [20], which
presents a coherence-based covert channel. Instead, most of the
attacks focus on the single-core scenario, which does not face
obstacles in evicting remote cache lines since the attackers always
share the same private cache with the victim. For the cross-core
scenario, Armageddon [20] successfully implements eviction-based
attacks between cores, indicating that their tested platforms comply
with the inclusiveness prerequisite. The instruction-side flush-based
attack [22] relies on inclusive caches as well.

However, AutoLock [15] limits the success of [20] and [22] by
unveiling a lockdown feature of private cache lines found in many



ARM processors. The feature even takes effect in a cache hierarchy
that is announced to be inclusive. We agree with AutoLock and
conclude that it is still hard to conduct eviction-based attacks in
the cross-core scenario because inclusive cache hierarchies on ARM
processors should never be assumed, not to mention the existence of
AutoLock feature. Additionally, there is no eviction-based attack in
the cross-cluster scenario.

This paper systematically analyzes the ARM big.LITTLE archi-
tecture design and unveils the SF, an unexplored directory built in
ARM interconnects to keep caches coherent. The SF is inclusive
between cores and clusters and therefore meets the two prerequisites
of eviction-based attacks. We propose to attack directories, i.e., SF, on
ARM big.LITTLE processors, and make the following contributions:

• Discuss the directory on ARM platforms, revealing the structure
and property of the SF by our systematic reverse engineering.

• Demonstrate the applicability of eviction-based cache side-
channel attacks on ARM big.LITTLE processors, despite there
being no shared cache hardware between clusters.

• Present a comprehensive methodology to exploit the SF side-
channel, including

– a probabilistic approach to construct SF eviction sets
– an SF covert channel between cores and clusters
– eviction-based attacks on AES and RSA, and we are the

first to attack RSA on ARM processors in the user space
– an interrupt-based side-channel attack on RSA in the Trust-

Zone scenario, despite the strict cache clean defense
• Quantitatively compare the SF with the cache on real-world

ARM big.LITTLE processors, resulting in competitive perfor-
mance and better capability.

II. PRELIMINARIES

In this section, we introduce the template ARM big.LITTLE
architecture, the general concept of the SF, and the technique of
eviction-based attacks. Finally, our threat models are presented.

A. ARM big.LITTLE Architecture

The big.LITTLE architecture formally involves a “big” core cluster
and a “LITTLE” core cluster. The big cluster is designed to provide
maximum performance, while the little cluster aims to achieve maxi-
mum power efficiency. The two clusters have different specifications
based on their purpose, i.e., little cores usually have lower core
frequencies, smaller cache hierarchies, and less power consumption
than big cores, which makes ARM big.LITTLE processors more
suitable for the dynamic usage pattern of today’s devices. The
template ARM big.LITTLE architecture is shown in Fig. 1, and it
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Fig. 1. The template ARM big.LITTLE architecture design.
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Fig. 2. The general design of the SF.

usually comes with an ARM cache coherent interconnect (CCI) to
offer hardware-managed coherency.

In such a system, two clusters and other coherent hardware are
connected to master interfaces, and the main memory and system
peripherals are connected to slave interfaces. Snoop requests are
broadcast by masters to keep caches coherent, like the implementation
in CCI-400 [27]. However, CCI-400 suffers a lot from redundant
snoop requests between masters. To reduce the workload, the SF
is then imported into CCI-500 [28] and CCI-550 [29] to provide
efficient snoop requests management by keeping records of cached
data. In the following discussion, we target the template ARM
big.LITTLE architecture design with CCI-5XX as it is widely used
and currently on sale [19].

B. General Concept of SF

The bus snooping scheme keeps caches coherent by broadcasting
snoop requests to every master, but it suffers a lot from a heavy bus
workload. Broadcast overhead goes higher with more masters that
own private caches. Directory-based protocols [30], [31] deal with
the scalability issue by storing the cache line status of all masters
so that cache coherence is maintained by point-to-point transactions.
The SF is one of the directory-based implementations proposed by
academia [32], [33] and industry [28], [29]. The general design of the
SF is shown in Fig. 2, for which an extra memory block is imported
to record the status of cache lines, including owners, address tags,
and coherent states (e.g., MOESI [34]). Thanks to the SF, masters
now no longer need to broadcast a write exclusive request but check
contents of the SF; it directly writes if snoop misses, or invalidates
the cache lines of specific masters if snoop hits. Other requests are
managed similarly, leading to less power consumption and lower
snoop latencies.

C. Technique of Eviction-based Attacks

Prime+Probe [2], [10] is the most common technique of eviction-
based cache side-channel attacks. The attacker first needs to construct
an eviction set, i.e, a group of addresses that are mapped to the same
cache set. In every monitoring epoch, there are three procedures:
prime, wait, and probe. In the prime procedure, the attacker loads the
eviction set to fully occupy a cache set. During the wait procedure,
if the victim loads data that is mapped to the same cache set, data
cached by the attacker will be evicted. The attacker finally reloads
the eviction set in the probe procedure. A longer reloading time can
be detected due to cache misses, indicating that the cache set has
been previously accessed by the victim.



D. Threat Models and Assumptions

There are two threat models in this paper. The probabilistic
approach, the covert channel, and the side-channel attacks are im-
plemented in the user space. When conducting reverse engineering
and attacking TrustZone, we assume attackers have kernel privileges.

In the user space, we make minimal assumptions that attackers are
not allowed to share the virtual memory with victims, and cache-
cleaning instructions are disabled for user programs as well. Due
to the context switching mechanism of the OS, we do not assume
that a malicious program can operate on a specific core. We use
the cycle counter PMCCNTR as the timing source for more precise
evaluations. Though PMCCNTR may be disabled in the user space,
this causes no loss of generality since equivalent timing sources are
still available [20].

In the kernel space, we assume victims are built as services in
the secure world of TrustZone, while the OS in the normal world
is malicious. Malicious programs are implemented as kernel drivers
and can assign any core to invoke a secure service. Such a threat
model is common for kernel privileged attackers and totally obeys
the assumptions made by TrustZone [35].

III. REVERSE ENGINEERING

In this section, we review accessible information about the SF,
design systematic reverse engineering, and finally evaluate the capa-
bility of the SF as a new side-channel.

A. Hints and Assumptions

Hints. We have exhaustively reviewed the documents published by
ARM [28], [29], [36] and present all the details as follows.

• The SF is 8-way set associative and ARM recommends setting
the SF directory to be 0.75-1 times the total size of the caches.

• There exist performance counters to count the access times of
SF banks, from the 1st to the 8th bank.

• Conflicts happen when an SF set has no available position to
insert a new entry and an existing entry must be evicted.

• CCI issues a CleanInvalid snoop to processors that are
holding the evicted lines. This type of eviction is called “back-
invalidation” and it is expected to occur rarely.

Assumptions. In our reverse engineering, we only consider the most
practical scenario that the SF is configured to keep caches coherent
between two clusters. The conservative assumptions are

• The SF has an 8-way set associative structure. We refer to its
sets as “SF sets”, each of which can record the status for 8
address tags of cached data.

• Conflicts in an SF set trigger the back-invalidation, forcing the
corresponding cache lines to be evicted.

• It may or may not be bank-sliced, i.e., the bank number can be
1 or above.

• It is strictly inclusive that every cached data must have its tag
recorded in the SF.

B. Experiments Platforms

Directory structures may not be implemented on every processor,
like the x86 work [14] only presents one server processor for
evaluating the directory. Not to mention that ARM processors are
much more diverse. Therefore, we decide to work on the template
design of the ARM big.LITTLE architecture. Two system-on-chips
(SoCs), namely Hisilicon Kirin 960 and Kirin 970, are selected
because they are officially announced with CCI-550. Apart from two
developer-friendly boards called Hikey960 and Hikey970 [37], [38],
we further verify some of our implementations (like the construction

TABLE II: EXPERIMENT PLATFORMS.

Hikey960 Hikey970 Honor View 10
SoC Kirin 960 Kirin 970 Kirin 970
Processor 4 Cortex A73 as big cores, 4 Cortex A53 as little cores.
L1-Data A73: 4-way, 256 sets A53: 4-way, 128 sets
L2 Cache A73: 16-way, 2048 sets A53: 16-way, 512 sets
OS Buildroot Linux 5.5 Debian Linux 4.9 Android 9.0

of SF eviction sets) on a modern smart phone, Honor View 10 [39], to
justify the practicality. The software and hardware specifications are
listed in Table II. Explicitly speaking, around 100 phones [40], [41]
with the two SoCs and any other edge devices that adopt CCI-550 are
directly affected by our works. At this time, we do not reproduce our
works on other SoCs due to the accessibility or confidentiality limits
from vendors. However, we design general reverse engineering and
algorithms to ensure the extendability. In the following experiments,
we only show the results on Hikey960 if results are similar between
devices.

C. Reverse Engineering

1) Find the First Eviction Set: Researchers usually investigate the
structure and property of a set associative structure by observing
its conflict behaviors, i.e., how and under what conditions conflicts
are triggered. To reverse engineer the SF, we need to find the first
SF eviction set (EV) in the kernel space, which is the entry of SF
conflicts. An EV refers to a collection of addresses that are mapped
to a specific set. For a better demonstration, we extend the traditional
definition [2] by calling an EV with the size exactly equal to the set
associativity a “minimized EV” and an EV with a larger size than a
minimized EV a “conflict EV”. A cache set can only accommodate
a cache minimized EV and any coming data triggers cache conflicts.
Therefore, traversing a cache conflict EV results in cache misses and
takes a longer time. The same for the SF, SF conflicts that happen
in an SF set trigger back-invalidation, which finally results in cache
misses. As a result, an SF conflict EV can also be detected by timing
difference, as shown in Fig. 3.
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Fig. 3. Latencies of accessing a cache (or SF) conflict EV.

There exist previous approaches [2], [14], [42] for constructing
cache EVs, however, they cannot be directly applied to the SF. In
Section IV, we will explain the reasons and propose our approach
for constructing SF EVs in the user space. To find the first SF EV
before we know the detailed structure, we rely on some engineering
techniques and empirical attempts. Since we have no idea of the set
index portion of the SF, one technique is to allocate a candidate set
with addresses that have the same lower n bits. We set n to be 23,
which is very likely to cover the possible set index portion. The SF
may have a bank-sliced structure, indicating that addresses with the
same set index portion may still not be mapped to the same bank [43].
We therefore propose Algorithm 1 to randomly pick 9 addresses from
the candidate set and evaluate until SF conflicts are detected. We can
successfully get an SF conflict EV for any initial value of lower n



Algorithm 1: Search an SF conflict EV
Input: Candidate set D with the same lower n bits
Output: SF conflict EV T
while 1 do

T ← {}
repeat 9 times

addr← random pick(D\T )
T ← T ∪ {addr}

end
access(T ) // Load to cache it well
t← access latency(T )
if t > SF conflict threshold then

D ← D\T // remove T from D
return T

end
end

bits, and an SF minimized EV can be obtained by removing one
address from the obtained SF conflict EV.

2) Set Associativity: For any address, we can know its owner set
by checking if it can be evicted by the corresponding minimized EV.
We prepare a large enough EV, from which we can construct EVs
with different sizes. Average access latencies of EVs of different sizes
are shown in Fig. 4. The change of lines’ slopes obviously depicts the
capacity of an SF set and a cache set, which supports our assumption
of the 8-way set associative structure.

4 8 12 16 20
Set Size of EV

A
cc

e
ss

 L
at

en
cy

 (
C

yc
le

s)

0

1000

2000

3000

4000

5000
Cache EV
SF EV

Random Collection

Fig. 4. Access latencies of EVs of different sizes. SF conflicts happen when
the size of an SF EV is larger than 8.

3) Replacement Policy: Our verification starts with an SF conflict
EV of 9 addresses. Firstly, access 8 addresses several times to cache
them well. Secondly, access them “in order”, and then access the
9th address. Now one of the 8 addresses must be evicted due to
SF conflicts. We observe an even distribution of the 8 addresses,
indicating that the SF is more likely to use a random replacement
policy as every entry in an SF set has the same possibility of being
selected, regardless of the sequence of loading. Indeed, the true
replacement policy may be much more complex than we expect,
however, the claim of a “somewhat” random policy is reliable enough
for side-channel attackers.

4) Set Size: The number of sets can be figured out by counting
how many mutually exclusive EVs are in a contiguous memory space.
By using an SF minimized EV, we can filter out all the addresses that
also belong to the same EV. Such a filtering procedure is iterated
within a contiguous memory space until the last SF EV is identified.
The uniform results of experiments with different pool sizes are
shown in Table III, indicating that the set size is 16384.

TABLE III: NUMBER AND SIZES OF SF EVS.

Contiguous Memory Number of SF EVs Set Size
8 MB 16384 8
32 MB 16384 32

512 MB 16384 512
1 GB 16384 1024

4K Page OffsetPhysical Frame Number

𝑏𝑏0

SF Set Index Line OffsetSF Tag

𝑏𝑏5𝑏𝑏19 𝑏𝑏11𝑏𝑏31 𝑏𝑏16 𝑏𝑏8SF Bank Hash

Fig. 5. Memory for a 4 GB address space from the aspect of the 4 KB page
and the SF index.

5) Set Index Portion: The set index portion of the SF can be
unveiled by checking identical bits of addresses in an SF EV. We try
to cover as much memory space as we can, though the maximum size
of an SF EV is limited by the main memory’s capacity. The overall
memory space we can cover is roughly 3 GB in Hikey960 or 5 GB
in Hikey970 and Honor View 10, and we iterate such collections
with reboots to also import the randomness from Kernel Address
Space Layout Randomization (KASLR) [44]. Based on the reliable
collections, we find out that addresses mapped to the same SF set all
have the same value of the 9th to the 19th bits, as shown in Fig. 5.

6) Bank Hash Function: There are totally 16384 SF EVs, which
contradicts our reverse engineered SF set index portion as it only has
11 bits. Additionally, a random collection of addresses with the same
SF set index portion can not always form an effective SF EV. This
phenomenon is not weird for sliced set associative structures [43],
[45], [46]. The number of SF banks is revealed by the gap between
the set size and the set index portion, i.e., 16384/2048 = 8. The bank
of an address is determined by an undocumented hash function H:

H : {0, 1}32−6 → {0, 1}3 (1)

The input is a physical address. We reconstruct the hash function
for a 4 GB memory space and then subtract 6 bits for the cache line
offset. The output is the decision from the 1st to the 8th bank. Works
in [45], [46] further indicate that H can be separated by independent
one-bit hash functions and each function can be expressed as a series
of XORs of the input bits:

H = h2h1h0

h2 = b28 ⊕ b26 ⊕ b18 ⊕ ...

h1 = b11 ⊕ b7

h0 = b28 ⊕ b26 ⊕ ...

(2)

where bi denotes the ith bit of the input, and we call it an “effective
bit”. In our reverse engineering, we hypothesize that the hash
function of the SF has a similar form to that of sliced LLC on x86
processors, which is verified true in the following evaluations.

Maurice et al. [45] reconstruct the ground true hash function with
the help of performance counters, however, the performance counters
offered by CCI are not satisfying enough: despite there being 8 SF
banks, we are only offered 4 events and each event is fixed to count
the access time of two banks. E.g., the first event counts “access
to snoop filter bank 0 or 1, any response.”. As a consequence, we
propose our own method to reconstruct the hash function, which is
more general and does not rely on dedicated performance counters.

As all SF EVs can be obtained from a contiguous memory space,
we can choose a specific value of the set index portion to get 8 SF
minimized EVs. For any address, it can only be evicted by one of
the 8 SF minimized EVs. We simply number the 8 SF minimized
EVs in order, so the “eviction test” of an address results from bank
{000}2 to bank {111}2. As shown in Algorithm 2, we conduct the
eviction test twice, one for the original address and another one for
the address with one bit reversed. Whether a bit is the effective bit
of hash functions is indicated by the difference between resultant



TABLE IV: REVERSE ENGINEERED BANK HASH FUNCTIONS.
H 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6
h2 ⊕ ⊕ ⊕ ⊕ h2 = b28 ⊕ b26 ⊕ b18 ⊕ b8

Kirin 970 h1 ⊕ ⊕ h1 = b11 ⊕ b7
h0 ⊕ ⊕ ? ? ? ? ? ? ? ? ? ? ? ⊕ ⊕ h0 = b28 ⊕ b26 ⊕ b8 ⊕ b6
h2 ⊕ ⊕ ⊕ h2 = b28 ⊕ b18 ⊕ b8

Kirin 960 h1 ⊕ ⊕ ⊕ ⊕ ⊕ h1 = b25 ⊕ b22 ⊕ b19 ⊕ b17 ⊕ b7
h0 ⊕ ? ? ? ? ? ? ? ? ? ? ? ⊕ h0 = b26 ⊕ b6

⋆Bits with ? can be revealed if we have perfect performance counters, which are lacking in CCI.

Algorithm 2: Evaluation of the effective bit

Input: 8 SF minimized EVs B[8], the kth bit to evaluate
Output: {0, 1}3, indicating the effectiveness for h2h1h0

addr← random pick()
addrre ← addr⊕ 2k // reverse the kth bit

bank id← 0
for i← 0 to 7 do

access(addr)
access(B[i])
t← access latency(addr)
if t > cache miss threshold

then
bank id← i
break

end
end

bank idre ← 0
for i← 0 to 7 do

access(addrre)
access(B[i])
t← access latency(addrre)
if t > cache miss threshold

then
bank idre ← i
break

end
end

return {bank id}2 ⊕ {bank idre}2

banks. The result is shown in Table IV. Note that the obtained hash
functions are not the only solution because we may not number banks
as the real hardware implementation. Additionally, the 9th to the 19th

bits cannot be evaluated since they must be fixed to maintain the
same set index portion. However, this is all attackers need due to its
effectiveness of distinguishing addresses into 8 banks. Nevertheless,
considering that the ground true hash functions can be reconstructed
with the help of dedicated performance counters, we also leverage
the imperfect performance counters offered by CCI to reveal more
details. The result is also shown by the red symbols in Table IV,
which is believed to be useful for others.

D. SF Side-channel

In conclusion, the SF has an 8-way set associative structure with
a random replacement policy. There are 8 SF banks and each bank
holds 2048 sets. Given any address, it can be mapped by checking
the hash functions and the SF set index portion, and this is how we
construct SF EVs in the kernel space, too. We design verification
routines to justify the SF as a new side-channel: 1) Randomly collect
an address and construct its corresponding SF minimized EV. 2)
Access the address to cache it well and then access the SF minimized
EV. 3) Check if the data is still cached. A successful verification
should return the data evicted. The verification gets passed after
enough attempts between cores and clusters. To exploit the SF side-
channel, we propose SF-based Prime+Probe attacks, in which we
leverage SF EVs instead of cache EVs. In the following discussion,
we refer to Prime+Probe as a general technique, i.e., prime, wait, and
probe procedures. We call SF-based Prime+Probe SF-Prime+Probe,
while the previous attacks are called Cache-Prime+Probe.

IV. CONSTRUCTING SF EVICTION SETS

In this section, we establish the necessary block for eviction-based
SF side-channel attacks in the user space, i.e., constructing SF EVs.
We first analyze why existing approaches fail, and then propose our
probabilistic approach.

A. Cache EVs Construction

Acknowledged approaches to construct cache EVs are proposed
in [2], [14], [42]. We follow their efforts and become able to construct
a cache EV for any victim address in only seconds.

Limitation: The key of the existing approaches is to check whether
an address conflicts with a candidate set. Unfortunately, we cannot
naively transfer such an idea to the SF, since 1) we cannot directly
deal with the SF, and instead, we rely on caches to interact with
the SF, i.e., we allocate new SF entries by caching data, and we
observe the back-invalidation by cache misses. 2) There is no way
to distinguish SF conflicts from cache conflicts as they both behave
as cache misses. 3) SF conflicts appear much less often than cache
conflicts due to the larger set size and the bank-sliced structure. After
all, the design goal of the SF is to evenly map common memory
activities. To construct SF EVs, we suggest to avoid cache conflicts
first, and then collect SF conflict samples.

B. Probabilistic Approach

We here define the cache hierarchy we operate on: it has a W -
way set associative L2 with S sets and the line size is L. The
specifications of the SF are the same as what we reverse engineered.
Originally, user space attackers can only access the lower 11 bits of
a physical address with the help of 4 KB pages. Thanks to cache
EV construction, we can further increase the scope to the lower
log2S + log2L bits. However, there are still log2(16384/S) bits we
cannot cover, as shown by the green shadow area in Fig. 6, and we
call them “unknown bits”. Therefore, it turns out to be a probabilistic
event: “addresses picked from a cache EV have the same SF set index
portion”.

L2 Set Index

4K Page OffsetPhysical Frame Number

𝑏𝑏0

SF Set Index Line OffsetSF Tag

𝑏𝑏5𝑏𝑏19 𝑏𝑏11𝑏𝑏31

Line OffsetL2 Cache Tag

𝑏𝑏16 𝑏𝑏8SF Bank Hash

a. b. c.
Fig. 6. Set index portions of the L2 cache and the SF. The unknown bits in
a. cannot be covered.

First, we prepare a cache EV of size N , denoted as C. Now,
considering the ideal model when we construct a large enough cache
EV with an infinite N , for any address in C, it has the same
possibility for (16384/S) different values of unknown bits:

P (unknown bits = {00...0}2) = ...

... = P (unknown bits = {11...1}2) =
S

16384

(3)

Second, we randomly collect k (8 < k ≤ W ) addresses from
C and get C′ = {c1, c2, ..., ck}. The setting of the lower bound is
because we wish to find SF conflicts so k must be larger than the SF



set associativity, and the upper bound is set to avoid cache conflicts.
A “success collection” is when we get a collection containing more
than 8 addresses with the same SF set index portion (so the same
value of unknown bits). In the ideal model, it becomes k independent
and identical processes that the possibility is

P (success collection)

=

k∑
i=9

P (success collection: i addresses case)

=

k∑
i=9

16384

S

(
i

k

)(
S

16384

)i(
1− S

16384

)k−i

(4)

The possibility increases monotonically with k so we may simply
adopt k = W . We expand every address in C′ into 8 addresses
by setting the 6th to the 8th bits from {000}2 to {111}2 to get
C′′ = {(c10, ..., c17), ..., (ck0, ..., ck7)}. According to the reversed
hash functions, such an expansion not only keeps the SF set in-
dex portion unchanged but also imports extra addresses that are
mapped to all 8 SF banks. More importantly, we can now check
whether a collection is a success collection by timing difference,
since cache misses are triggered “only” by SF conflicts. In case a
success collection is discovered, we can easily obtain the first SF
EV via similar approaches as constructing cache EVs. Remaining
SF EVs can be searched out as the obtained SF EVs help filter out
irrelevant addresses to significantly increase the probability of later
success collections.

C. Results

The most essential point is whether our probabilistic approach
works on real hardware. For big cores on ARM big.LITTLE pro-
cessors, i.e., A73 with S = 2048, k = W = 16, and L = 64,
P (success collection) = 2.97× 10−4 in the ideal model. Therefore,
the expected number of attempts is 1/P (success collection) = 3367,
which can soon be done by big cores. In the real case, however, we
cannot construct an infinite cache EV. For a specific value of N , the
arithmetic expression of P (success collection) becomes complicated,
so we use simulation to analyze it. For each different N , we let
the simulation try no more than 10, 000 collections, and record the
number of attempts once succeed. The results are shown in Table V.
Note that the averaged number of attempts is only calculated by the
success cases, so the success rate also makes sense. When operating
on an A73 core with N = 256, our probabilistic approach gets a
success collection after 3082 attempts on average, with a success rate
of 0.921, which is consistent with the simulations. Given a victim
address, our approach takes 7.8 seconds to construct its cache EV
with N = 256 and 3.57 seconds to construct its SF minimized EV,
which is practical and efficient enough as the baseline cache EV
construction also finishes in seconds [42].

However, when the probabilistic approach operates on little cores,
i.e., A53 with S = 512. The number of unknown bits is quadrupled so

TABLE V: ATTEMPTS FOR A SUCCESS COLLECTION.

N (Size of Cache EV) Averaged Attempts Success Rate
64 3224.22 0.564

128 2936.57 0.826
256 2887.29 0.924
512 2821.41 0.929
1024 2818.92 0.944

a 256 3082.00 0.921
b 256 3557.54 0.89

aevaluated on Hikey960. bevaluated on Honor View 10.

TABLE VI: PRIME+PROBE COVERT CHANNELS.

Sender & N Ts Tr Error aBW Cross-
Receiver / us / us Rate / bps cluster?

Cache A53→A53 92 12.5 12.5 0.050 21937 ✗

A73→A73 92 4.5 4.5 0.049 51901 ✗

SF A53→A53 90 9.0 9.0 0.053 21459 ✗

A73→A73 90 6.5 6.5 0.052 42726 ✗

A53→A73 78 23.0 16.0 0.051 18612 ✓

A73→A53 78 18.0 26.0 0.047 18561 ✓
aBandwidth

that P (success collection) = 8.52× 10−9, which is computationally
infeasible. To sum up, the construction of SF EVs depends on the
specifications of the hardware implementations, which is usually
feasible on big cores but infeasible on little cores. Nevertheless, once
an SF EV is constructed, following attacks will not be influenced even
if the OS schedules the attacker’s thread to a little core. Besides, for
the SF covert channel in Section V-A, the sender or receiver on a little
core can smoothly construct SF EVs with the help of the receiver or
sender on a big core.

V. SF SIDE-CHANNEL ATTACKS

In this section, we demonstrate the SF as a new side-channel by
applications including covert channel and side-channel attacks against
AES and RSA. Note that various countermeasures [47]–[50] have
been proposed; however, AES and RSA are still being analyzed
by researchers [9], [14], [20]. Our presented implementations are
more for quantitatively comparing the cache and the SF, so we
put less emphasis on the applications in more practical and general
scenarios, i.e., we omit the efforts for addressing obstacles, such as
synchronizing with victim threads, figuring out the target cache (or
SF) sets, etc. The performance comparison accounts only for the
monitoring and recovering procedures.

A. SF Covert Channel

Relying on Prime+Probe, our core implementation is similar to
that of previous works [1], [2], [51], while additional operations are
needed when in the cross-cluster scenario. The program on a big core
first constructs and repeatedly loads an SF EV, causing the target SF
set to be occupied. For any address, the program on a little core
loads it, waits for a while, and reloads it. If the reloading results in a
cache miss, the program realizes the address is from the target SF EV.
The procedure is iterated until a minimized SF EV is obtained. In the
transmission step, all parameters except two are fixed: N bits are sent
for every packet, and T denotes the prime time (Ts for the sender
and Tr for the receiver). On the tested platform, both the cache and
SF adopt the random replacement policy so accessing EVs multiple
times is needed. For a fair comparison, when in the cross-cluster
scenario, we ensure that the sender and receiver always access EVs
with the same number of iterations instead of the same prime time.

The larger N and the smaller T are, the higher bandwidth but also
the higher error rate can be. We implement cache covert channels
in the cross-core scenario and SF covert channels in both the cross-
core and cross-cluster scenarios. As shown in Table VI, the results
(averaged by 1,000 traces) reveal that the SF covert channel reaches
82% of the bandwidth of the cache covert channel between big cores,
and almost the same between little cores. In the cross-cluster scenario,
the performance is still satisfying regardless of the core the receiver
is running on: 85% of the bandwidth of the cache covert channel
between little cores. Hence, we recommend to implement the SF
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covert channel, as it works with competitive performance, while the
cache covert channel would immediately fail once a user program is
rescheduled to another cluster by the OS.

B. T-table Based AES

The T-table implementation is one of the optimizations of AES,
which precomputes round operations as T-tables. However, T-tables
are accessed based on the value of the plaintext and key, forming
a secret-dependent access that can be monitored by side-channel
attackers. Targeting the 128-bit AES encryption of OpenSSL 1.1.1a,
we first implement the first round attack [52] to vividly demonstrate
the secret-dependent access of T-tables, as shown in Fig. 7. The access
pattern of T-table elements is generated by Prime+Probe, and we
iterate the detection 256 times. The results show that SF-Prime+Probe
works well between cores and clusters, while Cache-Prime+Probe
fails in the cross-core scenario.

To systematically analyze the SF side-channel, we implement the
last round attack [53] to fully recover the key and compare SF-
Prime+Probe with Cache-Prime+Probe in different scenarios. The
implementation of the last round attack mainly follows the previous
design, and for every encryption, we use Prime+Probe to monitor all
the target cache (or SF) sets. The recovered bits increase with the
number of the encryption, as shown in Fig. 8, in which we mark
the scenario, the side-channel, and the core the attacker locates. Our
attacks depict that SF is a reliable and practical side-channel, as there
is no significant difference when using the SF than using the cache in
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Algorithm 3: Sliding-window RSA implementation
Input: base b, modulo m, exponent e = (en−1...e0)2
Output: be mod m
precompute: multipliers M [2w−1] to M [2w − 1]
r ← 1
for i← 0 to n− 1 do

if (ei+w−1...ei)2 matches any j ∈ [2w−1, 2w − 1] then
repeat w times

r ← r × r mod m
end
r ← r ×M [j] mod m // Secret-dependent access of M
i← i+ w

else
r ← r × r mod m

end
end
return r

the single-core scenario, while SF-Prime+Probe only takes less than
three times the encryption to overcome the bound between clusters.

C. Sliding-window Based RSA

The sliding-window algorithm of RSA is shown to be vulnerable
to side-channel attacks [2]. We attack RSA in MbedTLS 2.26.0,
and its implementation is shown in Algorithm 3. To release the
burden of modular computing, the multipliers are pre-computed and
stored well, denoted as M [2w − 1], where w is the window size.
The algorithm accesses different multipliers based on the bits in
the window, and forms a secret-dependent memory access. Side-
channel attackers can monitor the memory access pattern to figure
out when and which multiplier has been loaded by the victim. To
attack the RSA decryption, the attacker and victim need to operate
simultaneously and the attacker keeps conducting Prime+Probe on the
cache (or SF) sets that the multiplier is mapped to. In the user space,
we target the 4096-bit RSA decryption with w = 1. Whenever the bit
in the window is ‘1’, the victim needs to load the multiplier, so that
the cache (or SF) conflicts can be detected in the probe procedure.

To the best of our knowledge, there is no user space cache side-
channel attack of RSA on ARM processors. This is because attacks
on RSA can only be conducted in the cross-core and cross-cluster
scenarios, which are still difficult on ARM platforms. Thus, we are
the first to implement cross-core and cross-cluster RSA attacks on
ARM big.LITTLE processors. The access latency of 60 profiling
samples is shown as Fig. 9, in which the victim is running on the
little core, and the attacker, on the big core, monitors the SF set by
SF-Prime+Probe. The higher latency means this multiplier has been
previously loaded by the victim, indicating that the bit in the window
is ‘1’. When attacking RSA in the cross-cluster scenario, we load the
SF EV 8 times in the prime procedure and wait for 350 cycles before
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From the access latency generated by SF-Prime+Probe, we can recover the
key bits as ‘10111’.
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the probe procedure. After our evaluation, only 37 samples on average
are sufficient to fully recover the private key without error.

D. Attack TrustZone

Trusted execution environments (TEEs) are imported into modern
processors to offer stronger protections. Until now, Intel SGX [54]
and AMD SEV [55] are the most common TEEs on x86 platforms,
and ARM TrustZone [56] is built in most high-end ARM proces-
sors. However, previous works [21], [57] reveal that TEEs are still
vulnerable to cache side-channel attacks. Presently, there are two
attackers [25], [26] exploit the interrupt mechanism to significantly
improve the performance of side-channel attacks on TrustZone.

However, a naive cache cleaning defense has already been pre-
sented. OPTEE [58] invokes cache-cleaning instructions to flush
the core’s private caches before world switching. According to our
investigation, cache-cleaning instructions on ARM platforms offer the
core the ability to flush and invalidate L1 and L2 caches; however,
they cannot directly flush a remote cache hierarchy. To allow a core
in the secure world to smoothly flush the cache lines of another
cluster, we believe rigorous and low-level modifications of TrustZone
are needed. Here, we define such a defense as the “strict cache
clean defense”, which significantly reduces the performance, though,
indeed defends the interrupt-based attacks in [25], [26].

We implement a similar framework in which the attacker pe-
riodically interrupts the victim’s program and then conducts side-
channel attacks. We configure our TrustZone environment to be the
same as the reference implementation by Trusted Firmware [59],
i.e., TF-A + OPTEE + MbedTLS. The victim is running the 4096-
bit RSA decryption with the same implementation in Algorithm 3
but with w = 6, which means the attacker needs to monitor 32
different multipliers. We interrupt the victim program 52471 times
and conduct Prime+Probe attacks during every interrupt epoch. The
access patterns of the cache (or SF) sets are shown in Fig. 10.
Note that this is the raw data generated by only a single profiling
trace, in which we can find out the obvious secret-dependent memory
accesses. Despite the strict cache clean defense being enabled, SF-
Prime+Probe still generates a clear enough access pattern. We can
then easily recover the private key based on attackers’ knowledge [2],
[26], which is also visualized as the red symbols in Fig. 10. Hence,

we propose to exploit the SF side-channel in the kernel space as it
achieves the same performance as the single trace recovery in [26]
while bypassing the strict cache clean defense.

VI. MITIGATION

Hardware-based: There exist hardware implementations to mitigate
cache side-channel attacks, e.g., SHARP [11] alters the cache replace-
ment policy and ScatterCache [60] randomizes the mapping of cache
sets. With such countermeasures, cache conflicts are expected to be
suppressed, and constructing a cache EV becomes harder. However,
they may ease SF side-channel attacks since SF EVs are easier to
construct if cache conflicts are suppressed. Alternatively, we can
implement such countermeasures on SF by preventing SF conflicts,
for which we believe case-by-case studies are needed.
Software-based: Software-only defenses [61], [62] usually utilize
performance counters to monitor malicious memory access. These
defenses will perform better if the anomaly-based detection is further
optimized for the SF. In addition, SF conflicts come with the back-
invalidation, which can be monitored by the performance encounter
of CCI. Other software defenses from the program side, such as
the software diversity techniques [63] and the source code level
defenses [64], [65], should also work because the SF side-channel
attacks still rely on the secret-dependent memory access. Unfortu-
nately, software-based defenses unavoidably degrade the performance
and may also destroy the lightweight design of TrustZone.

VII. CONCLUSION

In this paper, we proposed to attack directories on ARM
big.LITTLE processors by unveiling an unexplored structure called
SF in ARM CCI. Our systematic reverse engineering and detailed
experiments revel that SF is sufficiently capable as a new side-
channel, which not only shows competitive performance but also
overcomes the difficulties of the cache side-channel in the cross-core
and cross-cluster scenarios.

DISCLOSURE

ARM confirmed our work and indicated that our unveiled structure
overcomes the lack of shareability in ARM designs that normally
thwart cache side-channels between cores and clusters. They believe
the threat model is unchanged, thus, similar to dealing with the
cache side-channel attacks, they recommend adopting software-based
mitigation as we discussed in Section VI.
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