
Load-Step: A Precise TrustZone Execution Control Framework
for Exploring New Side-channel Attacks Like Flush+Evict

Zili KOU
Hong Kong University of
Science and Technology

zkou@connect.ust.hk

Wenjian HE
Hong Kong University of
Science and Technology
wheac@connect.ust.hk

Sharad Sinha
Indian Institute of
Technology Goa

sharad@iitgoa.ac.in

Wei ZHANG
Hong Kong University of
Science and Technology

wei.zhang@ust.hk

Abstract—Trusted execution environments (TEEs) are imported
into processors to protect sensitive programs against a potentially
malicious operating system (OS), though, they are announced
not effective in defending microarchitecture (µarch) side-channel
attacks. Furthermore, TEE attackers often utilize their high
privilege to strengthen attacks by interrupting the execution
of victim programs. Maximum temporal resolution is achieved
on the x86 platform, which interrupts and measures by every
instruction. However, the capability of µarch side-channel attacks
and the precision a kernel-privileged attacker can achieve in the
TrustZone system are still unexplored. In this paper, we propose
Load-Step, a precise framework that periodically interrupts the
victim program in the TrustZone system and then conducts µarch
side-channel attacks. Our self-designed benchmark shows that
Load-Step can invoke interrupts with load-instruction precision.
Based on Load-Step, we present Flush+Evict, a new side-channel
attack detecting the Arm Cache Coherent Interconnect (Arm-
CCI). It outperforms Prime+Probe with much higher precision
and 282% of the profiling speed. When attacking the RSA
decryption in the latest MbedTLS library, Load-Step can recover
the full key by only a single trace in 7.5 seconds. Our work
thus breaches the exponent blinding, which aims to defend RSA
decryption against side-channel attacks in the MbedTLS library.

Index Terms—µarch attack, Embedded system, Arm TrustZone

I. INTRODUCTION

Personal privacy and sensitive information in computing
systems are receiving increasing attention. However, software
vulnerabilities are frequently discovered since some privileged
system programs contain insecure code that can be utilized
to achieve privilege escalation. TEEs are thus imported into
modern central processing units (CPUs) to offer isolation be-
tween enclaves and the outside, claiming that even a malicious
OS cannot compromise the enclave programs. Till now, Intel
Software Guard Extensions (SGX) [1] is the most common
TEE on the x86 platform and TrustZone [2] is built in almost
every Arm device.

However, recent research [3, 4, 5, 6] reveals that µarch
side-channel attacks are effective in leaking secrets of enclave
programs. In the upgraded threat model of systems with TEEs,
attackers are considered to be the kernel-privileged software
or even the malicious OS. Thus, TEE attackers usually take
advantage of their high privilege in the OS to significantly
improve traditional µarch side-channel attacks. For instance,
cache side-channel attacks conducted by kernel-privileged at-
tackers require fewer observation traces to recover the keys of
cryptography algorithms [3]. Furthermore, attackers [3, 4, 5]
in the SGX usually exploit the interrupt mechanism of the OS
to repeatedly preempt the execution of enclave programs. In
such cases, the temporal resolution of the attacks is determined
by the interrupt precision. The per-instruction precision is
achieved by SGX-Step [5] with which attackers can even

expose the execution flow of the victim program [4]. However,
there is no systematic analysis of µarch side-channel attacks
in the TrustZone system. The improvement of the µarch side-
channel attacks and the maximum temporal resolution the
attacker can obtain are still unknown.

This paper systematically analyzes the TrustZone system and
claims that the TrustZone is weak to µarch side-channel attack
as a malicious OS can exhaustively strengthen itself to obtain
fine-grained information. In detail, we propose a framework
named Load-Step, which lies in the normal world that can
interrupt a secure world program with high-precision and low-
noise. We present Flush+Evict, which is the first attack to
exploit the side-channel from the scope of the whole TrustZone
system instead of only within a core. Summarized, we make
the following contributions:

• Our systematic analysis of the TrustZone system points
out that some Arm-specific properties like the power
constraint and the requirement of memory coherency can
be utilized to enhance the µarch side-channel attacks.

• We implement Load-Step as a Linux kernel driver that
can be installed on rooted Arm devices. Load-Step has a
precision up to load-instruction level.

• Based on Load-Step, we present Flush+Evict as a new
µarch side-channel attack detecting the Arm-CCI. Com-
pared to Prime+Probe, Flush+Evict achieves much higher
throughput and precision.

• We show that a kernel-privileged attacker in the TrustZone
system can recover the full key of the RSA decryption in
the latest MbedTLS library by a single detection trace.
This implies some latest defenses of side-channel attacks,
like exponent blinding, are still vulnerable.

II. BACKGROUND AND RELATED WORK

A. Cache Side-channel Attacks

The cache is an essential component in modern CPUs that
saves much time in loading data. The cache is implemented
in fixed-size lines and is usually set-associative, i.e. an N way
set-associative cache means every set can hold N lines. Data
with the same pattern of physical addresses will map to the
same cache set. If new data needs to be cached into a saturated
cache set, one old cache line should be evicted. Based on the
properties of the cache, adversaries exploit cache side-channels
to breach cryptography algorithms [7, 8]. Here we present two
types of cache side-channel attacks.

Evict-based: Prime+Probe [8]. The attacker elaborates a
group of data called an eviction set that maps to the same
cache set. When loading the eviction set, the specific cache set
is fully occupied by the attacker. If the victim loads data that
also maps to this cache set, the data of the attacker is evicted.978-1-6654-3274-0/21/$31.00 ©2021 IEEE

Normal OS
EL1

Hypervisor
EL2

Secure WorldNormal World

Trust OS
S-EL1

Trust Apps
S-EL0

Secure Monitor
EL3

EL0
Applications

(a) Software

A53 Cluster

A53
Core

Memory Filter

A73 Cluster

DRAM Memory

Other

Components

A53
Core

A53
Core

A73
Core

A73
Core

A73
Core

A53
Core

A73
Core

(b) Hardware

Fig. 1: Control domains of the TrustZone system.

The attacker therefore needs more time to reload the eviction
set, indicating this cache set has been accessed by the victim
in the past.

Flush-based: Flush+Reload [7] and Flush+Flush [9]. The
attacker flushes a cache line of a specific address, causing this
data to be evicted from the cache. If the victim loads that
data, the data is cached and remains in the cache. The attacker
therefore needs less time to reload/re-flush this data. In flush-
based attacks, the attacker needs to share the same memory
space with the victim.

B. Side-channel Attacks against Enclaves

TEEs are claimed to defend the enclaves against even a
malicious OS. However, recent research has revealed that TEE
attackers can conduct high-resolution side-channel attacks with
the help of upgraded privileges. On the Intel SGX platform,
kernel-privileged attackers explore the OS’s built-in functions,
like the interrupt mechanism, to enhance their side-channel
attacks [3, 4, 5, 10]. In detail, the attacker periodically raises
interrupts to preempt the core previously used by the victim
enclave. Then, attackers can observe side-channels including
caches [3, 10], page tables [4, 5], and branch prediction
units [11] every time when interrupting the enclave programs.
In such cases, the temporal resolution of the attack is deter-
mined by the precision of the interrupt mechanism, i.e., how
frequently the interrupts are raised. SGX-Step [5] uses the
private hardware timer to invoke interrupts with per-instruction
precision. Copycat [4] indicates a kernel-privileged attacker
with per-instruction precision can even expose the balanced
and page-aligned switch case statement.

C. Arm TrustZone

The Arm TrustZone aims to provide isolation for sensitive
programs by hardware and software co-design. In software,
the whole system is divided by exception levels (ELs). The
EL3 and secure exception levels (S-EL0 and S-EL1) are
initiated before the normal OS boots. Programs in the EL0-
EL2 cannot access the memory of the secure world, and all
communications are governed by the TrustZone-specific smc

instruction. In hardware, components like the memory filter
can block insecure memory accesses. Moreover, when a core
switches to the secure world, the whole core, together with its
µarch resources, are out of the control of the normal world.
The shadow regions in Fig. 1 depict the control domains of
the TrustZone in both software and hardware.

The TrustZone technology has been widely used in both
academic projects [12, 13] and commercial products [14].
Despite the hot atmosphere of the SGX, only a few works
discuss the µarch side-channel attacks in the TrustZone system.
In detail, works in [6], [15], and [16] analyze the traditional

Timing Source

Time Up

Victim Core

World Switch

Secure Enclave

Start the

Timer

Interrupt Generator

Auxiliary Core

Context

Recovery

Preparation Detection

Interrupt

Handler

Cross-Core

Interrupt

5

1

2

3

4

Fig. 2: Structure of Load-Step.

cache side-channel attacks on Arm devices and then present
limited examples to claim that cache side-channel attacks are
possible of leaking secrets from the TrustZone. Their threat
models are in user-privilege without the exploration of the
new upgraded threat model in TEEs. The work in [17] attacks
Arm TrustZone in the malicious OS scenario, using the OS’s
capabilities to invoke interrupts and Prime+Probe to extract the
keys of Qualcomm’s ECDSA algorithm. Rather than analyzing
the µarch vulnerabilities in the TrustZone system, this work
aims more to breach a real cryptography algorithm, for which
it takes hours to recover the key. To attack the TrustZone at the
µarch level, a more systematic analysis that stands in a general
point of view is expected and new Arm-specific attack methods
with higher performance are promising to be discovered.

D. Threat model

Our attack assumes that a cryptography library is imple-
mented in the secure world and offers normal world services
to invoke. Meanwhile, the OS in the normal world is assumed
malicious, which means the attacker can install any external
kernel module or software driver to the OS. The attacker can
assign any specific core to run a cryptography program in the
secure world. These assumptions are common for launching
attacks on TEEs [18] and are still within the assumptions made
by the TrustZone.

III. LOAD-STEP FRAMEWORK DESIGN

In this section, we first analyze the control domain of
the TrustZone and then present our framework to handle the
main difficulties when developing high-precision and low-noise
interrupt-based attacks in the TrustZone system.

Unlike that of the SGX, the TrustZone’s control domain is
stricter in both software and hardware aspects. In software, it
implements a separate trust OS in the S-EL1, and the enclave
programs never rely on the normal OS for page walking. Thus,
it is impossible to leak information by monitoring page tables.
In hardware, when a core is assigned to run a program in the
secure world, the normal OS loses control of all the hardware
resources of this particular core. However, the components
outside the control domain can still be thoroughly utilized. In
software, attackers can edit the kernel code of the normal OS
to increase the precision while reducing the noise. In hardware,
any other components on the bus can be used by attackers to
enhance the µarch side-channel attacks.

A. Structure

In the TrustZone system, once a core switches to the secure
world, the normal OS would completely lose control of it. This
renders the conventional interrupt manipulation methods [3, 5]
not applicable to the TrustZone, as they require that some
hardware resources such as the private hardware timer can
survive during the world switch.

Arm Generic Interrupt Controller

Arm Cache Coherent Interconnect

L2 Cache

A73

Core

A73

Core

A73

Core

A73

Core
IO

Coherent

Master
L2 Cache

A53

Core

A53

Core

A53

Core

A53

Core

Fig. 3: The big.LITTLE architecture of Arm CPUs.

We then involve two cores in Load-Step: one as the auxiliary
core and the other as the victim core. The attack procedure
is shown in Fig. 2. 1© The auxiliary core receives a time-
up event from its timing source. 2© It then controls the Arm
generic interrupt controller (Arm-GIC) to generate a cross-core
interrupt forwarding to the victim core. 3© The normal OS is
responsible for handling cross-core interrupts. Thus, once the
victim core receives the interrupt, the secure world is forced to
save its context and switch to the normal world. Immediately
following is the detection step designed for attackers to do
various µarch side-channel attacks. 4© Then, we let the original
OS routines proceed. 5© Before the victim core resumes to the
secure world, we allow attackers to prepare the µarch states,
after which Load-Step informs the auxiliary core to start the
timer for the next attack epoch.

Note that Load-Step is a generic attack framework that
different detection methods can be adopted to detect different
µarch side-channels. Taking Prime+Probe on L2 cache as an
example, when the victim core is interrupted and switches to
the normal world, the victim core immediately does the Probe

to gather the secrets and does the Prime just before it switches
to the secure world. The detection methods in Load-Step are
more powerful than those in traditional attacks, as the victim
programs are suspended for every interrupt epoch during which
the detection methods have sufficient time and privilege to
detect, analyze, and prepare the µarch side-channels.

B. Installation

We implement Load-Step as an external kernel module that
can be installed into the Linux OS. In the normal world OS,
alongside the world switch function are the interrupt handler
function and the context recovery function. To get a stable
run-time environment with minimum noise, Load-Step firstly
searches the memory location of the two functions and then
replaces them with the malicious functions. Some hijack tricks
such as direct memory modification are needed, but it is still
within the privilege assumption of the threat model and feasible
for a kernel module. Now, the detection method, as well as its
preparation, are executed in the highest priority in the normal
world, as shown in Fig. 2.

C. Timing Source

The precision of the interrupt invoking determines the tem-
poral resolution of attacks, implying that the timing source is
essential. We now discuss the possible timing sources, and we
will present their performance results in Section V-A.

Modern CPUs usually implement private hardware timers
for each core, which can deliver hardware interrupts for OS
scheduling. When attacking enclave programs, the timer can
be a reliable timing source with few software jitters. We build
the necessary software driver for the private hardware timer
on Arm devices so that the timer of the auxiliary core can

Algorithm 1 Software timing sources

Variant-A: a Finite Loop
Temporal parameter: Ta

t← Ta

do
t← t− 1

while t > 0

Variant-B: Detect Cycle Counter
Temporal parameter: Tb

to ← read(PMCCNTR) + Tb

do
t← read(PMCCNTR)

while t < to

TABLE I: Trade-off between reliability and resolution

Reliability Resolution

Hardware Timers Few jitters 200 ns to 1000 ns

Software Methods More software jitters 1 ns in a 1 GHz core

periodically generate time-up events in a dedicated interval.
However, the frequency of the timer on Arm devices is usually
fixed and relatively slow, like 2 MHz of the platform we use,
which is much slower compared to the core’s speed.

To overcome the limited precision of the hardware timing
source, we exploit the possible software methods and provide
two variants, as shown in Algorithm 1. In Variant-A, the
auxiliary core runs a finite loop where the parameter Ta

determines the interrupt interval. Variant-B takes advantage
of the cycle count register (PMCCNTR) of Arm cores to get
the time. The precisions of both the software timing sources
are therefore as high as the executing speed of the core.
However, software methods incur more jitters than hardware.
A comparison between hardware and software timing sources
is presented in Table I. The best choice varies on devices since
the frequency of the hardware timer differs from that of chips.

D. Arm-specific Optimization

Most Arm CPUs are designed as the big.LITTLE archi-
tecture [19], which involves a high-performance cluster and
a power-efficient cluster, as shown in Fig. 3. Dynamic voltage
and frequency scaling (DVFS) is built in the Linux kernel
to manage power consumption. To meet the power efficiency
constraints, the frequency of little cores is much lower than
that of big cores. For example, the frequency of little cores on
Kirin 960 System on Chip (SoC) [20] ranges from 533 MHz
to 1844 MHz, while the big cores can run up to 2362 MHz. As
the TrustZone system relies on the normal world to invoke and
schedule the trusted services, we then choose a little core as the
victim core to run the sensitive program and set its frequency
to the lowest while choosing a big core as the auxiliary core
with its maximized speed. As a result, the relative precision
of the software timing source is increased. Additionally, when
the system is idle, it is more common for an Arm device to
shut down all other cores, only leaving a little core on to meet
the minimum demand. We utilize this feature to greatly reduce
the noise as we can shut down the other three little cores that
share the targeted L2 cache with the victim core.

IV. FLUSH+EVICT

Traditional side-channel attackers usually need many obser-
vation traces to enhance their confidence of secrets guessing
because every single trace unavoidably involves some noise
or only when gathering enough traces can the attacker have
the full information to guess the secret. The precision and
the throughput of a side-channel attack thus determine the
capability and the practicality of the attack. After all, it is
practically infeasible to launch a side-channel attack that re-
quires millions of traces in hours to figure out one cryptography

L2 cache

Set 1

Set 2

Set 3

Set 512

···

···

Difference:

2 cache lines are refilled

Measured by:

Time of loading

Read PMU of Core

Prime+Probe

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Initial State

···

Set 7

Line 1

Line 2

Line 16

···

Prime

···

Set 7

Line 1

Line 2

Line 16

···

Flush

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

···

Set 7

Line 1

Line 2

Line 16

···

Victim Access

··· ···

Set 7

Line 1

Line 2

Line 16

Probe

···

Set 7

Line 1

Line 2

Line 16

···

Evict

Flush+Evict
Difference:

2 cache lines are evicted

Measured by:

Read PMU of ARM-CCI

Fig. 4: Methodology of Prime+Probe and Flush+Evict.

key. TEE attackers [3, 17] usually adopt Prime+Probe to
monitor the victim program’s data flow by the cache side-
channel. However, evict-based attacks have lower precision and
throughput than flush-based attacks due to the costly loading
of the eviction set. In this section, we present Flush+Evict and
its design challenges. Flush+Evict is the first flush-based attack
targeting the TrustZone system.

a) Sharing memory: The main constraint of flush-based
attacks is that the attacker must share the memory space
with the victim, which contradicts the TrustZone’s isolation.
Flushing the victim’s cache lines by the addresses of the data is
impossible in the TrustZone system, however, there exist other
Arm-specific methods that can achieve the same effects. The
Armv8 [19] instruction set architecture (ISA) implements more
special cache maintenance instructions than the ISA on x86.
DC CISW denotes cleaning and invalidating the data cache
by set and way. This flexible instruction offers us the ability
to precisely flush a specific cache set instead of loading the
eviction set to occupy it.

b) Timing difference: For a flush-based attack to work,
it is fundamental to have a special flush instruction, which
exhibits timing difference between cached and uncached data.
Unfortunately, DC CISW does not demonstrate a clear timing
difference on a cache line regardless of whether it is empty
or cached. Additionally, no performance counter of the Arm
core can detect such a difference. We address this challenge
by leveraging the Arm-CCI to detect the state of the cache.
As shown in Fig. 3, there is no shared cache connecting two
clusters except the Arm-CCI. To maintain cache coherency
between clusters, the Arm-CCI adopts a snoop-based policy to
synchronize two clusters [21]. For instance, when one cluster
evicts data from its cache, it must send an evict transaction to
the Arm-CCI. Moreover, the kernel-privileged attacker is able
to access the Arm-CCI’s performance monitor units (PMUs)
that can count the number of evict transactions.

We then present Flush+Evict, a high precision and through-
put side-channel attack, to distinguish whether the victim has
previously accessed the data belonging to a specific cache set,
as shown in Fig. 4. In the Flush step, the attacker flushes a
cache set by DC CISW, making it empty for the victim. In
the Evict step, the attacker flushes the set again and checks
the increment of the evict transaction by Arm-CCI’s PMU.
The increment ranges from zero to the set-associativity of the
cache, implying the extent of access by the victim.

V. EVALUATION

We evaluate Load-Step on a real Arm platform, Hikey 960
with Kirin 960 SoC [20]. The frequency of its private hardware
timers is 2 MHz. It has eight Armv8 cores in the big.LITTLE
architecture, four Cortex A73s [22] in the big cluster and four

Algorithm 2 Benchmark Program

Step 1: Elaborate a bunch of data D[512][16] given the targeted cache has 512 cache
sets that are 16-way set-associative.

D[i][j] maps to the ith cache set for all j.
Step 2: Access cache sets sequentially.

for all i < 512 do
for all j < 16 do

Load D[i][j]
end for

end for
Step 3: Release the memory and clear the context.

Cortex A53s [23] in the little cluster, as shown in Fig. 3. Linux
kernel 5.5 is running in the EL1 and the open-source TrustZone
design called OPTEE [24] is implemented in the S-EL1 as
the trust OS. We choose an A53 core as the victim core and
an A73 core as the auxiliary core. We perform Flush+Evict
side-channel attack on the A53’s L2 cache, which is 16-way
set-associative and has 512 cache sets in total.

A. Temporal Resolution

Load-Step aims to interrupt the victim programs and con-
duct µarch side-channel attacks with high temporal resolution.
Therefore, selecting the right timing source as well as the best
parameters is important. Algorithm 2 describes our benchmark
program, which firstly allocates a bunch of data whose size is
the same as the L2 cache size, and then sequentially accesses
the data maps to every cache set. Load-Step periodically
interrupts the benchmark program and conducts Flush+Evict to
profile the memory access of the entire L2 cache. We visualize
the experiment results with the format of a heat map, where the
Y-axis denotes the cache sets, the X-axis denotes the interrupt
epochs, and the color denotes the extent of the memory access.

Fig. 5(a) shows that Load-Step invokes interrupts by every
16 load-instructions when using the private hardware timer as
the timing source. In this case, the memory access pattern
of the benchmark program looks like a straight line, starting
from the first cache set to the last. Fig. 5(b) is the result with
a shorter interrupt interval, which interrupts the benchmark
program by 4 load-instructions on average. The best precision
the private hardware timer can achieve is shown in Fig. 5(c),
which invokes interrupts by 2 load-instructions on average.
The program would fall into endless embedded interrupts if
the parameter were set too small. This is because the limited
frequency of the private hardware timer cannot help distinguish
any more load-instructions and the further reduction of the
parameter causes the interrupt interval to be smaller than the
world switch period.

We then try the software timing sources, and the results show
that software timing sources can easily defeat the hardware
timing source with higher precision, as shown in Fig. 5(d)-5(f).
Variant-A performs better than Variant-B due to its simple but
effective design. In Fig. 5(e), Load-Step can almost achieve
the load-instruction precision as there are only a few interrupt
epochs that have two memory accesses. By slightly reducing
the parameter, Load-Step finally distinguishes every load-
instruction of the benchmark program, as shown in Fig. 5(f).
In both software and hardware timing source, we cannot get
perfectly even patterns due to the unavoidable jitters of the
whole system. This also suggests that the jitters from other
parts cancel out the intrinsic stability of the hardware timer.
Therefore, the software timing sources are always prior unless
the hardware timer has a very high frequency.

1
Interrupt Epoch (offset)

527

Time of Access
0

16

C
ac

h
e

S
et

(a)

1

C
ac

h
e

S
et

Interrupt Epoch (offset) 28

Time of Access
0

7

(b)

1C
ac

h
e

S
et

26

Time of Access
04 3 2 1

Interrupt Epoch (offset)

(c)

1

C
ac

h
e

S
et

Interrupt Epoch (offset) 54

Time of Access
03 2 1

(d)

1C
ac

h
e

S
et

Interrupt Epoch (offset) 54

Time of Access
02 1

(e)

1C
ac

h
e

S
et

Interrupt Epoch (offset) 59

Time of Access
01

(f)

Fig. 5: Results of benchmark experiments. (a) Hardware timing source with TH = 51fp
−1. (b) Hardware timing source with TH = 46fp

−1.
(c) Hardware timing source with TH = 41fp

−1, where TH is the temporal parameter and fp = 2 MHz is the frequency of the private
hardware timer. (d) Software timing source Variant-B with Tb = 680. (e) Software timing source Variant-A with Ta = 515. (f) Software
timing source Variant-A with Ta = 505.

Algorithm 3 RSA sliding-window algorithm

Given: exponent d, window size S, ciphertext C, modulo n

Compute: plaintext M ← Cd mod n

Step 1: pre-compute multipliers W [2S−1] to W [2S − 1]
Step 2: exponentiation

P ← 1
for i from 1 to length(d) do

if [didi+1...di+S−1]2 matches any j ∈ (2S−1, 2S − 1) then
do P ← P × P mod n for S times
P ← P ×W [j] mod n //do a multiplication
i← i + S

else
P ← P × P mod n //do a square

end if
end for

B. RSA Single Trace Attack

In this experiment, we demonstrate that, with Load-Step, our
Flush+Evict side-channel attack can break the security of the
RSA decryption implemented by MbedTLS 2.22.0. We first
introduce the implementation of the RSA algorithm and then
present our attack.

1) Sliding-window Algorithm: In the latest MbedTLS li-
brary, the RSA decryption adopts the sliding-window algorithm
as shown in Algorithm 3. A window slides from the first bit
of the exponent d, which is exactly the private key, and does
a square for each bit. When the bits in the window match a
specific pattern, the program performs a multiplication with the
corresponding multiplier. For instance, when window size is
6, the program pre-computes multipliers W [32] to W [63]. If
the 6-bit value in the window matches “101000”, which is 40
in decimal, the program performs a multiplication with W [40].
Note that both the square and the multiplication are done by the
same function montmul mpi(). The multipliers are all such
very large numbers that loading them would usually occupy
more than 5 successive cache sets. Therefore, by detecting
when and which cache sets are accessed, we can know the
position and value of those multipliers and finally recover the
private key.

In our attack, rather than building a simplified prototype
to prove the concept, we target a real 4096-bit RSA im-
plemented by the MbedTLS under its default configuration.
The window size is set to 6, meaning the attacker must
monitor the 32 multipliers simultaneously, and the exponent
blinding [25] is added to randomize the exponent.

2) Attacking the RSA decryption: We use Load-Step to peri-
odically invoke interrupts, and for every interrupt epoch, we de-
tect the whole L2 cache by either Flush+Evict or Prime+Probe.
The raw profiling result of one RSA decryption collected by
Flush+Evict is shown in Fig. 6. This trace has 42841 interrupt

1
C

ac
h

e
S

et

Interrupt Epoch
42841560 42300· · ·

· · ·

(a)

(b)

(c)

W[52]

11 10 00 011 11 11

W[63]

11 01 01

W[57]

11 00 11

W[51]

11 11 11

W[63]

10 00 11

W[35]

11 10 11

W[55]

11 01 01

W[57]

000 00· · ·

Fig. 6: Memory access pattern of RSA decryption.

epochs in total and we only show the beginning and the end.
In brief, three essential areas offer us sufficient information to
recover the exponent, as shown by the red symbols in Fig. 6.
Area (a): the pre-computing of 32 multipliers leaves a slash-
like pattern at the beginning of the profiling. This hints to
us which cache set would be accessed when multipliers are
loaded into the L2 cache, i.e., the first multiplier W [32] would
be cached in the 106thset and the last multiplier W [63] would
be cached in the 370thset. Area (b): the montmul mpi() is
invoked repeatedly to do either the square or the multiplication,
which leaves unique and repeated patterns in some cache sets.
These patterns precisely describe the rounds of the algorithm
that have a one-to-one relationship with exponent bits. We
utilize such patterns to dramatically improve the precision of
the key recovery. Area (c): the square-shaped patterns caused
by loading the W [i] are the main target to deal with. We
implement an automatic recovery program based on such an
analysis, and its visualization is shown by the blue symbols
in Fig. 6. Area (a) helps us label each W [i]. For instance, the
first multiplier we discovered in Area (a) lies in several cache
sets starting from the 270thset. Since we know the range of all
the multipliers is from the 106thset to the 370thset, we can
then calculate that accessing the 270thset means loading the
W [52], and the corresponding 6-bit value is “110100”. Area (b)
helps us precisely count the round of the algorithm. For every
loading of the W [i], the montmul mpi() would be invoked 7
times. We then let every recovered 6-bit value occupy 7 rounds
and the remaining rounds can just be recovered to ‘0’s.

3) Key Recovery Performance: We first evaluate the perfor-
mance of the key recovery when using Flush+Evict. Owing to
the load-instruction granularity of Load-Step, we can generate
millions of interrupt epochs in a single trace, which offers
abundant information to recover the full key. As the noise level
is also low, we can speed up the attack by reducing the interrupt
frequency. Through our investigation, 12157 interrupt epochs

Interrupt times/ × 100022 32 43

E
la

p
se

d
 t

im
e

10s

20s

30s

40s

50s

60s

70s

80s

5112

Prime+Probe

Flush+Evict

(a)

Flush+Evict

Prime+Probe

(b)

Fig. 7: Comparison between Prime+Probe and Flush+Evict in which
(a) shows the profiling speed and (b) shows the profiling noise.

for a single trace are sufficient to 100% correctly recover the
key, which takes only 7.4 seconds for profiling and fixed 5
seconds for recovering. We conduct experiments and obtain
the same accuracy when applying the CRT [26] optimization.

We then compare the performance of Prime+Probe with
Flush+Evict by conducting the same experiments but we re-
place the detection method with Prime+Probe. Fig. 7(a) shows
the elapsed time when interrupting the victim program for the
same times. Flush+Evict has 282% of the profiling speed of
Prime+Probe on average, so as the throughput. As compared
in Fig. 7(b), Prime+Probe incurs much more noise due to
the heavy access of the eviction set. For a fair comparison,
we apply the same automatic recovery program to process
the profiling traces of both methods. The results in Table II
indicate that Prime+Probe needs 4 times more time to recover
either 88% or 98% of the key using a single trace. Although it
may be possible for Prime+Probe to recover more key bits
by manually analysis or by a more advanced algorithm in
future work, Flush+Evict still prevails because of the attacking
speed. Moreover, we also compare our work with a user-
privileged work [27], which uses Prime+Probe on x86 devices
to attack the 4096-bit RSA algorithm implemented by the
MbedTLS 2.3.0. Note that their version of MbedTLS is not
hardened by the exponent blinding and the window size is
set to 1, meaning the difficulty of key recovery is much lower
than ours. To summarize, Load-Step, as a kernel-privileged
framework, exhibits predominant performance improvement
compared with a user-privileged attacker.

4) Exponent Blinding: Exponent blinding is designed to de-
fend against side-channel attacks by randomizing the exponent
d to d+ ri(p− 1)(q− 1), where ri is a random number in the
ith decryption, and the length of ri denotes the blinding length.
With exponent blinding, the collision rate of two of the same
exponents dramatically decreases, making the side-channel
attacks [6, 17, 27] that require multiple traces impossible.
Taking the condition when the blinding length is 28 bytes as
an example, the work in [27], which needs 11 traces to recover
the full key, now must measure more than 4× 1030 traces for
getting collisions of the 11 same exponents. However, if the
attacker can recover the full key by a single trace, the exponent
blinding would be completely ineffective in protecting the
secret key. The 100% correct guessing, d+r(p−1)(q−1), can
just be used to decrypt the ciphertext because of the arithmetic
principle of the RSA [28] that Cd = Cd+a(p−1)(q−1) modn
for any integer a. Additionally, it is computationally feasible
to figure out the value of d given d+ r(p− 1)(q− 1), as well
as the value of p given dp + r(p− 1) and the value of q given
dq + r(q − 1) in the CRT mode [26].

TABLE II: Performance of key recovery

Detection Profile Interrupt Elapsed Recovery
Method Traces Epochs Time Accuracy

Load-Step Flush+Evict 1 12157 7.4 s + 5 s 1.00
1 10310 6.5 s + 5 s 0.978
1 9283 5.9 s + 5 s 0.861

Prime+Probe 1 17714 29.3 s + 5 s 0.978
1 16637 27.3 s + 5 s 0.885
1 13363 22.5 s + 5 s 0.823

[27]a Prime+Probe 11 < 5 min 1.00

aIt takes 3min to generate the eviction set, which is not needed for Load-Step

VI. CONCLUSION

In this paper, we presented Load-Step to claim that kernel-
privileged attackers can conduct µarch side-channel attacks
with load-instruction precision. We show that µarch side-
channel attacks can profit by the low-noise and high-precision
environment offered by Load-Step and therefore it is more
powerful. For example, Flush+Evict, a new side-channel attack
based on the Arm-CCI, performs much better in throughput and
precision and can recover the full key of an exponent-blinding-
protected RSA algorithm by only a single observation.

REFERENCES

[1] B. C. Xing et al., “Intel® SGX Software Support for Dynamic Memory
Allocation inside An Enclave,” in Proc. of HASP, 2016.

[2] A. Holding, “Arm Security Technology, Building A Secure System Using
Trustzone Technology,” 2009.

[3] A. Moghimi et al., “Cachezoom: How SGX Amplifies the Power of
Cache Attacks,” in Proc. of CHES, 2017.

[4] D. Moghimi et al., “CopyCat: Controlled Instruction-level Attacks on
Enclaves for Maximal Key Extraction,” arXiv, abs/2002.08437, 2020.

[5] J. Van Bulck et al., “SGX-Step: A Practical Attack Framework for Precise
Enclave Execution Control,” in Proc. of SysTEX, 2017.

[6] M. Lipp et al., “Armageddon: Cache Attacks on Mobile Devices,” in
Proc. of USENIX Security, 2016.

[7] Y. Yarom et al., “FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-channel Attack,” in Proc. of USENIX Security, 2014.

[8] F. Liu et al., “Last-level Cache Side-channel Attacks Are Practical,” in
Proc. of IEEE S&P, 2015.

[9] D. Gruss et al., “Flush+Flush: A Fast and Stealthy Cache Attack,” in
Proc. of DIMVA, 2016.

[10] M. Hähnel et al., “High-resolution Side Channels for Untrusted Operat-
ing Systems,” in Proc. of USENIX ATC, 2017.

[11] S. Lee et al., “Inferring Fine-grained Control Flow inside SGX Enclaves
with Branch Shadowing,” in Proc. of USENIX Security, 2017.

[12] J. S. Jang et al., “SeCReT: Secure Channel between Rich Execution
Environment and Trusted Execution Environment.” in NDSS, 2015.

[13] C. Marforio et al., “Smartphones as Practical and Secure Location
Verification Tokens for Payments.” in NDSS, vol. 14, 2014.

[14] Samsung, “Samsung Knox,” https://www.samsungknox.com/en/.
[15] M. Green et al., “AutoLock: Why Cache Attacks on Arm Are Harder

Than You Think,” in Proc. of USENIX Security, 2017.
[16] N. Zhang et al., “TruSpy: Cache Side-channel Information Leakage from

the Secure World on Arm Devices.” Trans. on IACR Cryptol, 2016.
[17] K. Ryan, “Hardware-Backed Heist: Extracting ECDSA Keys from Qual-

comm’s TrustZone,” in Proc. of ACM CCS, 2019.
[18] D. Rosenberg, “Reflections on Trusting Trustzone,” BlackHat USA, 2014.
[19] Arm, “Arm Architecture Reference Manual ARMv8,” F.c.
[20] 96boards, “Hikey960,” https://www.96boards.org/product/hikey960/.
[21] Arm, “Arm CoreLink CCI-400 Technical Reference Manual,” r1p1.
[22] Arm, “Arm Cortex-A73 Core Technical Reference Manual,” r0p2.
[23] Arm, “Arm Cortex-A53 Core Technical Reference Manual,” r0p4.
[24] OPTEE, “OPTEE,” https://www.op-tee.org/.
[25] P. C. Kocher, “Timing Attacks on Implementations of Diffie-Hellman,

RSA, DSS, and Other Systems,” in Proc. of CRYPTO, 1996.
[26] M. J. Campagna et al., “Key Recovery Method for CRT Implementation

of RSA.” Trans. on IACR Cryptol, vol. 2004, 2004.
[27] M. Schwarz et al., “Malware Guard Extension: Using SGX to Conceal

Cache Attacks,” in Proc. of DIMVA, 2017.
[28] P. Meelu et al., “RSA and Its Correctness through Modular Arithmetic,”

in AIP Conference Proceedings, 2010.

